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Abstract 
 
 

HIS REPORT DESCRIBES the construction of a dynamic optical hybrid system for imple-
menting multi-layer neural networks. The communication between neurons is 
performed by amplitude modulating optical signals with dynamic transmission filters 

realized with a ferroelectric liquid crystal spatial light modulator (FLC-SLM). A large part of 
the information processing is thus performed in parallel. The amplitude modulated signals are 
detected by a CCD-camera and some further processing is done in a conventional computer. 

The system should recognize two-dimensional graphic patterns and it has been tested on 
the ten Arabic digits in different shapes. As neural net algorithm a modified version of the 
Neocognitron model of Kunihiko Fukushima has been used. The system has been simulated 
in MATLAB and its ability to generalize and its sensitivity to disturbances have been 
examined. Furthermore the possibility of using a binary FLC-SLM to perform multi-level 
amplitude modulation has been verified. 

After training on a small number of different series of the ten digits, the simulated network 
has capability to generalize to shapes that are not part of the training set. Unfortunately the 
synaptic dimensions of the network are so large that the optical implementation could not be 
performed with the equipment presently at our disposal. With further refined optical compo-
nents this hybrid system will probably be highly competitive with systems using entirely 
digital computation.  
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1. Introduction 
 

 
HE BIOLOGICAL brain is today un-
surpassed in its ability to identify 
and distinguish different kinds of 

patterns. It is an old dream to construct 
machines capable of the same thing, but 
this has proved very difficult. 

A common algorithm used in this work, 
is the so called neural network, a structure 
which takes the biological brain as a 
model. Normally such algorithms are 
implemented in a computer, but since 
neural networks are strongly parallel 
structures, while today’s computers are 

serial, such solutions suffer from very long 
computation times. 

In this work we present a neural 
network based system for identification of 
two-dimensional graphical patterns, in 
which a large part of the computations are 
executed simultaneously using an optical 
setup. The whole system has been 
simulated in Matlab and some essential 
features of the optical part have been 
realized and evaluated in a laboratory 
setup. 
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2. Background 
 

 
2.1 What is a neural network ? 
Practically all computers we meet today 
are built according to the same basic 
pattern. The central component is the 
processor which can perform a number of 
complicated tasks. It is, however, the sole 
component capable of these tasks, and 
hence the computations are executed 
serially, i.e. one operation is performed at 
a time. 

The serial computer is in many 
situations an excellent tool, but some 
problems are parallel as to their nature and 
they become quite difficult for it to solve. 
An example is pattern recognition of 
various kinds. If we make small 
modifications of the input to a normal 
computational algorithm its response 
should change thereafter. If the task 
instead is to identify a letter or a digit, the 
response should be stable even if we for 
instance change the font. A machine set to 
solve such problems must be capable to 
generalize and extract the essential out of a 
huge information flow. In order to manage 
this it needs a so called associative 
memory [1]. 

The addressing of associative memories 
differs radically from that of traditional 
computer memories. A computer has no 
problems remembering the code to your 
credit card. It stores the information at a 
specific address in the memory and when 
the computer needs the code it reads the 
exact data from this address. You, on the 
other hand, do not have this possibility 
since the brain is an associative memory. 
In order to bring the code forward you 
might have to relate it to a word, or maybe 
it doesn’t pop up until you stand with your 

fingers on the keyboard. While the proces-
sor of a computer must give the exact ad-
dress to the place where the sought infor-
mation is stored, information from an 
associative memory is brought up when a 
fragment of a stored memory reaches it. 

It is apparent that the optimal uses for 
the different types of memory are not the 
same. Complicated computations which a 
serial computer evaluates in no time can be 
very time consuming for a human being, 
but to understand what a person is saying, 
or to realize that both oak and birch are 
trees, are tasks which most people perform 
without reflecting. 

In order to create machines capable of 
such tasks scientists have taken inspiration 
from the design of the biological brain. 
Instead of a single powerful processor our 
brain has an enormous number of very 
simple processors, neurons, which work in 
parallel and are connected in a very 
complex fashion. Neurons are binary units; 
either they give a signal with a fix strength 
or they stay quiet. 

Each neuron has connections, synapses, 
to a large amount of its neighbors. 
Through the synapses the neuron receives 
signals from its neighboring neurons. 
Since synapses differ in strength, some 
neighbors will affect the neuron more than 
others. The weighted signals are added and 
if the total input exceeds a certain 
threshold value, the receiving neuron will 
emit a signal. The strengths of the 
synapses may be altered during one’s 
lifetime and this is probably what happens 
when we learn something. Our memory 
thus consists of a certain set of synaptic 
strengths. 
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In a neural network one tries to mimic 
the structure of the brain. A number of 
models, differing in complexity and per-
formance, have been developed [1,2,3]. 
The choice of model depends on the prob-
lem to be solved. Common to all models is 
that the associative memory consists of the 
set of weighted connections between neu-
rons. The function of neurons, the type of 
connections, and the method of training 
the network, are things which often vary 
from one model to another. Often one 
combines several different models in one 
neural network. 

The family of neural networks used in 
this work is the so called feed forward net-
work, also called perceptrons (see figure 
1). These networks have one input- and 
one outputside and the direction from the 
former to the latter defines the direction of 
information flow during evaluation. 

 

 
 

Figure 1. A simple one-dimensional per-
ceptron with one layer of neurons. 
 

In its simplest form a perceptron has 
only one process stage. It is then said to 
have one layer of neurons. The network in 
figure 1 is an example of a singlelayer per-
ceptron. We see, however, that in reality 
we have two sets of neurons (represented 
by circles in the figure), but in the first no 
evaluation of data is performed. These 
neurons are needed as input receptors. 
Hence, in a comparison with the human 
nervous system, the neurons in the first 

column correspond to the rods and cones 
of the eye. By layers in neural networks 
we thus mean the combination of a set of 
neurons and the weights between them and 
their inputs. 

 
 

2.2 Multiple layers 
A deeper analysis of the function of the 
perceptron reveals that there exists a 
family of problems, the linearly 
unseparable problems, that are 
theoretically impossible to solve with only 
one layer of neurons [1,2]. The classic 
example of such problems is the logical 
XOR function. 

By connecting two or more layers in se-
ries we break this barrier. In a multilayer 
network the treatment of input is 
performed in several steps.  While the 
neurons of a onelayer perceptron must 
achieve a complete answer directly from 
the external input, each neuron in a 
multilayer network performs only a partial 
operation. By dividing the task into several 
simpler partial problems it is solvable for 
the network even if it is linearly 
unseparable. 

For the task set up in our project 
(detection of two-dimensional graphical 
patterns) a multilayer structure is 
preferable. Each layer extracts different 
features in the input to the layer, and we 
thus get a stepwise abstraction of the 
problem. In the first layer the input is 
analyzed concerning very simple features 
such as straight lines with different 
inclinations. The signals from this layer 
then constitute the input to the next, which 
extracts more complicated features. When 
the information reaches the output layer it 
has gone through an extensive pre-
processing which renders the response of 
the system much more reliable. 

 

Input Output

Data flow

i=1

i=2

i=3

i=4

i=5

Weightswij

j=1

j=2

j=3
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Figure  2. An example of human feature 
detection. The sounds uttered by the man 
and woman may be very personal, so in 
order to understand what they in fact mean 
the listener must do an analysis with 
respect to phonetic features, phonemes. By 
dividing the speech in phonetic 
constituents, the priest happily realizes 
that the sounds reaching his ears both 
express the message ”yes”. 
 
 
2.3 Hardware 
Neural networks are often implemented as 
a program run in a serial computer. This 
works reasonably well for simpler prob-
lems if the computer is fast. It is, however, 
an unsatisfactory solution and presently 
much work is done on developing 
hardware which works in a parallel 
manner [1,2,3,5,6,8]. One tempting 
thought is to implement parts of the 
system, or even the whole system, 
optically. For instance one can use an 
optical correlator to compare the input to 
stored images [6]. 

We have in this work chosen an optical 
implementation as described in figure 3. 
An input neuron is represented by a light 
source of which the intensity is 
proportional to the strength with which the 
neuron signals. The synapses from the 
neuron are represented by filters with 
transmittance values reflecting the 
synaptic weights. 

 

 
 
Figure 3. A neural network may be 
realized by amplitude modulation of light. 

 
With detectors we measure the light in-

tensities after passage through the filters. 
These values reflect the product between 
the inputs and the synaptic weights. The 
point is that a large amount of 
multiplications  may be performed at the 
same time (and at the speed of light) by 
using matrices of light sources, weight 
filters and detectors. I will return with an 
extensive description of the optical system 
in chapter 5. 

yes: yes:

“yes”

Input Output

light source
(=input neuron)

transmission
filters
(=weights)

detectors
(=output neurons)

to
computer

Weights
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3. The goal of our 
project 
 

 
 

HIS WORK IS in a sense a freestand-
ing sequel to the diploma work of 
Richard Englund entitled Optical 

Neural Networks for Associative Image 
Processing [5]. We have both aimed at 
constructing neural networks capable of 
recognizing and distinguishing a number 
of graphical patterns. The optical 
implementations in our projects are both 
based on amplitude modulation of 
incoherent light. 

Englund chose to implement a network 
based on the Ho-Kashyap algorithm, a 
relatively simple solution with only one 
layer. Due to the limitations of single-layer 
neural networks I wanted to go one step 
further and implement a network with sev-
eral layers. Since the elements of the Ho-
Kashyap algorithm are vectors, the two-
dimensional picture to be treated with this 
algorithm has to be converted into a one-
dimensional vector. In doing this we lose 
the valuable information that lies in the 
correlation between neighboring picture 
elements. For my work I searched for an 
algorithm that preserves such information. 

After having searched the literature for 
suitable alternatives I settled for a model 
called the Neocognitron. This model has a 
structure that is well suited for the task, 
and furthermore, the very attractive 
property for optical implementation, that 
weights as well as in-  and outputs are 
non-negative. As the model is rather 
complex I have found it necessary, 
however, to make some simplifications of 
it. Partly in order to fit the work within its 

time limits, and partly in order to adapt the 
algorithm to the conditions set by the 
optical implementation. 

Englund used a fix photographic mask 
to perform the weightings in his network. 
The weights were calculated entirely in a 
computer. This has two major drawbacks. 
The first is that no regard is taken to the 
inevitable distortion of the optical system. 
The other is related to the dynamics of the 
system. If one wants to add a pattern to the 
set of patterns recognized by the system, 
the weights must be recalculated and the 
fix mask must therefore be replaced by a 
new one. 

The other area where we wanted to take 
our system one step further than 
Englund’s, concerned the weight mask. 
Instead of a fix photographic mask we 
have chosen to use a Spatial Light 
Modulator, or SLM, with a ferroelectric 
liquid crystal (FLC) layer as active 
medium. The modulator is divided into a 
large number of picture elements (pixels) 
which can be switched between a 
transparent and an absorbing state. FLC-
modulators are binary elements, that is 
they have no gray scale. 

The pixel pattern can easily and quickly 
be changed which gives us the possibility 
of training the weights of the network with 
the optical equipment that will be used 
when the system is in operation. The aber-
rations introduced by the optical 
implementation are part of the training set 
and the neural network can therefore learn 
to compensate for them. 

T 
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Furthermore, implementing the weight 
mask with an SLM gives the system com-
pletely different dynamics with respect to 
change of synaptic weights and thereby the 
set of stored patterns. The dynamics of the 
SLM also opens up a way to optically im-
plement a multi-layer network, see chapter 
5. 

Our aim has not been to construct a 
very fast or efficient system. From the start 
we have been limited by the performance 
of the hardware at our disposal. Our goal 
has rather been to give a proposal to a 
technique which could, with better 
hardware and much further development, 
prove to be highly competitive with 
present solutions. 
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4. The neural network in 
our system 
 

 
 

S INPUT PATTERNS we have chosen 
the ten Arabic digits 0 to 9 in 
different guises, drawn with 27*27 

quadratic binary pixels. This picture is first 
fed through a set of neuron layers which 
has been trained to extract different 
features of the picture. Thereafter the by 
now highly preprocessed information 
reaches the output layer consisting of 10 
neurons with continuous output signals. 
Each neuron in this layer corresponds to 
one digit. Since the neurons in this layer 
give continuous-valued response we can, 
in addition to see which digit the system 
has identified the picture with, also get a 
measure of the reliability of the answer. 
This is done by comparing the response of 
the strongest output signal to that of the 
second strongest. 

 
4.1 The Neocognitron model 
Since the task of our system is to detect 
two-dimensional patterns I have chosen to 
implement a multi-layer system. I have 
started from the so called Neocognitron 
model [2,4,9] of Kunihiko Fukushima, but 
I have made a number of simplifications. 

The model features two different types 
of neuron; S- (Simple) and C- (Complex) 
neurons. They both have non-negative out-
puts but their operation and tasks are radi-
cally different. Each layer in the 
Neocognitron contains only one type, but 

an S-layer is always followed by a C-layer, 
and together they make up what I call a 
complex. The feature detection is 
performed in the S-layer, while in the C-
layer a simple processing of the S-layer 
output takes place. The purpose of the 
latter is to make the system less sensitive 
to lateral or vertical shifts of the input 
pattern. Our system features two 
complexes followed by the output layer 
which is of a different nature. 

 

 
 

Figure 4. An S- and a C-layer comprise a 
complex in the Neocognitron structure. 
When data flows from the S- to the C-layer 
a reduction of dimensions takes place. 
Therefore the C-layer has fewer neurons 
than the S-layer.

A 



4. The Neural Network of our System 

 8 

 
 

Figure 5. A very simple one-dimensional Neocognitron network. Here we have only two 
groups of two neurons in the S-layer and accordingly two groups of one neuron in the C-
layer. The receptive field of each S-neuron is three neurons large and the two groups have 
one input neuron in common. Note that the neurons within a group share the same weight 
setup. The neurons of the C-layer perform a logical OR function of the outputs from the S-
neurons they are connected to. 

 
Figure 5 shows a one-dimensional pic-

ture of the Neocognitron structure. The 
neurons of the S-layer are divided into a 
number of groups. The neurons within a 
group have the same weight setup to the 
input layer and thereby they become detec-
tors of the same feature. The coupling to 
the input is locally confined so that each 
neuron ‘sees’ only  a small part of the 
image. The neurons of the group are 
connected to different parts of the input so 
that each neuron has a unique receptive 
field. Neighboring neurons have, however,  
overlapping fields. Together, the neurons 
of a group scan the whole input image. 

The point with this structure is that all 
neurons within the group search for the 
same feature (they share the same weight 
setup) in different, locally confined, parts 
of the input image. In order to profit maxi-
mally from the group structure, we want to 
avoid that more than one group specializes 
in one feature. In the training process one 
therefore sees to it that the weight setup to 
each group is unique. 

Figure 6 illustrates the function of the 
two-dimensional Neocognitron structure 
used in our system. In part b of the figure 
the direction of the receptive field as a 
function of S-layer position is illustrated. 

 

 
 
Figure 6a. The S-layer is divided into a 
number of groups, where the neurons 
within a group share the same weight 
setup. Each group scans the whole input 
image, but its neurons react only for the 
specific feature they have been trained for. 

Different groups of
the S-layer.

The features for which the
different groups have been
trained. The neurons within one
group have the same weights,
making them all react for the
same feature.

Input
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Figure 6b. Illustration of the local connec-
tions between S-neurons and input. Each 
S-neuron is connected to only 6*6 input 
neurons, but all in all, the neurons within 
a group scan the whole input image. 
 

The C-layers are of a much simpler na-
ture. Each group in an S-layer has a corres-
ponding group in the succeeding C-layer1. 
Each neuron in the C-group is connected 
to 2*2 S-neurons and there is no overlap of 
receptive field between C-neurons. If one 
of the four S-neurons making up the input 
to a C-neuron signals with a strength 
above a certain threshold, the C-neuron 
will fire. The relation is illustrated in 
figure 7. 

Hence, the neurons of the C-layer per-
form a logical OR function. We get a 
smoothing out of the outputs from several 
adjacent S-neurons and thereby the sensi-
tivity to vertical or lateral shifts of the 
input image is diminished. A small 
displacement is reflected in the S-group 
output, but not in the response from the C-
group. 

The groups of the C-layer thus become 
binarized and dimensionally reduced 
images of their respective S-groups, see 
figure 7. This is a rough simplification of 
the Neocognitron C-layer but the basic 
function is the same [2,4,9]. 

 
                                                
1In my system the first complex has a slightly 
different structure. I will return to this modification 
in section 4.5. 

 
 
Figure 7. The relation between the 
neurons of an S-group and those of the 
corresponding C-group. 
 
4.2 Inhibitory neurons 
The fact that most neural networks feature 
both positive and negative quantities 
present difficulties when doing an optical 
implementation. The light intensity reflects 
the magnitude, but how do we give light a 
plus or minus sign? The Neocognitron 
model is in this respect very attractive as 
its weights as well as its neuron signals are 
non-negative. 

To do without negative weights one 
adds a layer of so called I-neurons2 to each 
S-layer. The name reflects that they are in-
hibitory as opposed to the excitatory S-
neurons. The latter excite their listeners, 
that is, a large output Uex from an S-neuron 
stimulates the succeeding neurons which 
take Uex as input, to fire. Inhibitory 
neurons have precisely the opposite effect; 
they inhibit their listeners, i.e. a large I-
neuron output Uin suppresses the response 
of succeeding neurons. The relationship is 
illustrated in figure 8. 

 
 
 
                                                
2In the original Neocognitron the I-neurons make 
up one special group of the S-layer, but I think the 
picture of the network becomes clearer if one treats 
this group as lying outside the S-layer. 

One S-group with 8*8
neurons with continuous-
valued output.

The corresponding C-group
has 4x4 binary neurons.
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Figure 8. The Neocognitron features two 
kinds of neurons: excitatory and 
inhibitory. The latter suppress the 
response of the former. 
 

The I-layer contains only one group. 
This resembles the groups of the S-layer as 
far as dimensions and local connections to 
input, but its neurons are inhibitory and 
their weights are not trained. The I-group 
is from the beginning given a fix 
symmetrical weight setup ci constructed 
such that the weights decrease linearly 
towards the edges of the receptive field, 
and their sum equals one, see figure 9. 
Note that I now use just one letter i to 
index the input neurons, even though they 
are divided into rows and columns of the 
two-dimensional receptive field. 

 

 
 

Figure 9. Graphical representation of the 
weight distribution ci, i.e. the strengths of 
the synapses between input and the inhibi-
tory neurons. Each square corresponds to 
a synapse and its grayshade reflects the 
strength (the lighter it is, the stronger the 
synapse). The weight distribution is nor-
malized, i.e. the 36 weights sum up to 1. 
 

The connections between inhibitory and 
excitatory neurons are illustrated in figure 
10. Each I-neuron is connected to all of its 
sister neurons in the S-layer via synapses 
with a strength bj, where j indexes the S-
groups. With sister neurons I mean S-neu-
rons with the same geometric location 
within its group, and thereby the same in-
put, as the I-neuron in its I-group. 

Connections leading from input to S-
neurons are called excitatory synapses and 
their strengths are in this text labeled aij. 
Connections between an I-neuron and its 
sister S-neurons are called inhibitory syn-
apses and have strength bj. As illustrated in 
figure 10a this quantity is common for all 
neurons within an S-group. 

 
 
Figure 10a. The structure of figure 5 com-
pleted with the inhibitory group. Note that 
all neurons of an S-group have the same 
weight to the I-group. In the interest of 
readability I have omitted the strengths of 
the excitatory synapses (aij). 
 

 
 
Figure 10b. The connection between in-
hibitory and excitatory neurons in our 
two-dimensional architecture. 

Different groups of
the S-layerThe input is connected

both to the excitatory S-
group and the inhibitory I-
group.Input

I-group
Each I-neuron
affects its
geometrically
equivalent neurons
in the S-groups.
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The inhibitory neurons are needed in 
order to prevent the excitatory neurons 
from reacting on incorrect features that 
contain the feature they have been trained 
for. An extreme example is shown in 
figure 11. If all the pixels in the receptive 
field of an S-neuron are lit (case a) the 
signals through its excitatory synapses will 
attain their maximum strengths 
irrespective of the feature they have been 
trained for. Such an image will, however, 
also provoke a strong inhibitory response 
which suppresses the response from the 
excitatory neuron. On the other hand, if the 
input corresponds to the specific feature of 
the group (case b) the excitatory synapses 
will give exactly the same signals as in 
case a, but since the inhibitory neuron 
reacts weakly, we will in this case get a 
strong S-neuron signal. 

 

 
Figure 11. The cooperation between exci-
tatory and inhibitory neurons. 
 

The two complexes of the system are in 
principal equivalent as far as the S- and I-
layers are concerned. They differ only in 
the number of groups and size of local re-
ceptive fields. 

4.3 The output layer 
In the output layer we leave the Neocogni-
tron model. The ten neurons (one for each 
output alternative) of this layer are all fully 
connected to the C2-layer and each connec-
tion is freestanding from the others. 
Weightsharing is thus not incorporated in 
this layer, which means we have as many 
weights as there are connections, i.e. 
10*15*16=2400 (number of output neu-
rons * number of groups in C2 * number of 
neurons per C2-group).  

The neurons of the output layer are of a 
very simple kind. The output from a 
neuron is simply the weighted sum of its 
input signals, i.e. the scalar product w • c2  
where w is a vector containing the weights 
to the neuron and c2 is a vector containing 
the outputs of the C2-layer. Since no local 
connections exist between the output layer 
and the C2-layer, the vectorization of the 
latter does not affect the outcome. The 
correlation between neighboring pixels is 
in any case not used. 

The weights of the output layer are con-
tinuous and may be of either sign. In order 
to implement this layer optically some way 
of representing negative numbers with the 
optical system is hence needed. One can 
for instance displace all values with an 
offset value such that the most negative 
value is raised to exactly zero. One extra 
pixel, representing the offset value, is then 
needed in the weight matrix, see for 
instance Englund [5]. In our system the 
output layer is not implemented optically. 

 
 

4.4 Summary of central 
concepts 
Before going on to an account of the train-
ing process, I would like to give the reader 
a well needed breathing space, and repeat 
the definitions of complex, layer and 
group, since these concepts will appear 
frequently in the text to follow. Figure 12 
gives a comprehensive view of the whole 
system architecture. The neurons of the 
network are divided into several 
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consecutive layers. Neurons within a layer 
take the signals from neurons of the 
preceding layer as input.  

In the Neocognitron model we have 
three different types of layer. A complex 
consists of one layer of each type; one S-, 
one I- and one C-layer. These are 
intimately connected to each other. Each 
layer is divided into a number of groups. 
My system features two complexes whose 
S-layers consist of nine and sixteen groups 
respectively. The two C-layers feature four 
and fifteen groups respectively. Each I-
layer consists of only one group and its 
function is to inhibit the response of the 

excitatory groups in the corresponding S-
layer, such that these won’t respond to 
incorrect input. 

Neurons within a group share the same 
weight setup but are connected to different 
parts of the input. Each group has, how-
ever, a weight distribution that differs from 
those of the other groups. Through training 
we want to specialize each S-group such 
that its neurons react on a certain feature in 
the input. Ideally none of the other S-
groups should react for the same feature. 
Every group should be a unique indicator 
of one certain feature. 

 
 
 

 
 
Figure 12. The network architecture of our system. Information flows from left to right (as an 
example of input we have chosen the digit 7) and during the passage a dimensional reduction 
is performed. The table below summarizes the dimensions at different stages. In the output 
layer there are no groups and only 10 neurons; one for each output alternative. 
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Table 1. Overview of the system dimensions. 
 
Layer In I1 S1 C1 I2 S2 C2 Output 
Neuron type binary 

exc. 
cont. 
inh. 

cont. 
exc. 

binary 
exc. 

cont. 
inh. 

cont. 
exc. 

binary 
exc. 

cont. 

Number of 
groups 

1 1 8 4 1 15 15 1 

Group 
dimension 

27*27 22*22 22*22 11*11 8*8 8*8 4*4 10*1 

Number of 
neurons in 
layer 

729 484 3872 484 64 960 240 10 

Weight-
sharing* 

- yes yes - yes yes - no 

Perceptive 
field size 

- 6*6 6*6 2*2 4*4*4! 4*4*4! 2*2 15*4*4! 

Overlap be-
tween per-
ceptive fields 
of 
neighboring 
neurons 

- yes yes no yes yes no no 

Number of 
weights to be 
set through 
training 

- 0 288 0 0 960 0 2400 

*Weight sharing means that several neurons have the same weight distribution. Since C-neurons perform a 
logical OR-operation on incoming data we can, in their case, not speak of weights in any real sense. 
! The neurons are connected to all groups of the preceding layer. The size of the receptive field therefore 
becomes n*s*s where n is the number of groups in the preceding layer and s is the lateral size of the receptive 
field. 

 
 
4.5 Training of the first S-layer 
The layers to be trained in the system are 
the two S-layers and the output system. 
Since the input of later layers consists of 
the output from preceding layers, we must 
start by training the first S-layer 
separately. During the training of the 
second S-layer the weights of the first are 
fixed and its neurons work exactly as they 
will when the whole system is in use. 
When both S-layers are sufficiently trained 
the Neocognitron part of the system is 
ready and the training of weights to the 
output layer can begin. 

The three layers are trained according 
to different methods. The S1-layer is not 
really trained in the normal sense. Instead 

we use a rather special method developed 
by Fukushima [4]. All weights are initially 
set to zero. Instead of using pictures from 
the normal system input (Arabic digits) as 
training set, each group is given a binary 
picture, with the size of the local receptive 
field, of the feature it should recognize. 
Only the connections leading from lit 
pixels are reinforced. The others maintain 
zero strength. In this way the neurons of 
the group are made to react strongly only 
on this feature.  

The weights are calculated in one step 
through the formula: 
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aij = q1 ! ci ! uij
b j = q1 ! ci !uij

i
"  (1) 

 
The values uij stand for the 6*6 neuron im-
age that group j is trained with. Each 
picture represents one feature (see figure 
14). With the constant q1 we may adjust 
the magnitude of the resulting weights and 
the weight setup ci is the fix weight setup 
from figure 9. The process is illustrated in 
figure 13. As this part is very simple, it is 
most easily realized entirely in the 
computer. 

 
 

Figure 13. The training of the weights to 
the first S-layer. Black in the figure corres-
ponds to the value 0, and white to 1. See 
also figure 14. 
 

The choice of training pictures is by no 
means self-evident. Since it is difficult to 
get the neurons to detect curves because of 
their narrow field of view, we started by 
using eight pictures of straight lines with 
different inclinations, see figure 14a. It 
turned out, however, that this approach 
made the system too sensitive to different 
inclinations of the input images. For in-
stance, an italic version of a digit provoked 
responses from entirely different groups 
than the straight version.  

For the next try we used the images of 
figure 14b. Half of the groups should still 
react for straight lines, while we hoped 
that the others would detect angles and 
curves. They did in fact have this effect, 
but unfortunately they also reacted 
strongly on all horizontal and vertical 
lines. Hence, they reacted for practically 
any input, which of course is highly 
unsatisfactory. 

In the final version I returned to only 
straight lines, but this time with only the 
four different inclinations shown in figure 

14c. As can be seen in the figure each line 
now appears in two versions: one thin and 
one thick version. This is because the Neo-
cognitron structure with inhibitory and ex-
citatory neurons (described in chapter 4.2) 
exhibits a property which turns out to be a 
major drawback when applied in our sys-
tem. The feature detectors become 
sensitive also to the thickness of lines. 
They thus react very differently on two 
images of the same feature but drawn with 
pens of different thickness. This drawback 
is most serious in the first S-layer since its 
neurons are connected directly to the 
system input, i.e. the digits to be 
recognized, which exhibits large variations 
in line thickness. 

 

 
 

Figure 14. The patterns used to train the 
weights to the first S-layer. Each group in 
the layer specializes in one of the patterns. 
Three different sets of patterns were tried 
out. The best results were obtained with 
the set shown in c). Part d) shows the 
weight distribution after training with this 
set of patterns. 

feature uij

* =

ci
Resulting weight
distribution aij

a)

b)

c)

d
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In order to compensate for this defect I 
trained the groups pairwise. Each pair spe-
cialized in one line inclination, but one of 
the groups was trained with a thin line 
while the other one was trained with a 
thick line. When the system is used the 
response from the two groups of a pair are 
superposed and the combination becomes 
the input to one single C-group. This 
group thus detects lines with a certain 
inclination, almost independently of the 
line thickness. 
 

 
 
Figure 15a. The response from the eight 
groups of the first S-layer when the digit 5 
in the font Monaco is given as input. 

 
Figure 15b. The response from the four 
groups of the first C-layer when the digit 5 
in the font Monaco is given as input. 
 
 
4.6 The training of the second 
S-layer. 
The method used to train the S1-layer has 
the virtues of being fast and producing 
groups that are good detectors of different 
features. However, it requires that we 

know exactly what these features look like. 
For the first S-layer it is not too difficult to 
pick suitable features, but when we get to 
the second complex, we are on a higher 
abstractional level and it is much harder to 
imagine what the features should look like. 
If we make a bad choice the performance 
of the whole system will suffer. I have 
therefore made the second S-layer search 
for features on its own. 

During the training process we present 
input images showing the ten digits to the 
system. The first complex performs its 
feature extraction, and the response from 
the neurons of the C1-layer becomes the 
input to the second S-layer. Instead of 
having some sort of teacher that corrects 
the synaptic weights according to how the 
neurons reacted and how they should have 
reacted to a certain input, we let the groups 
compete internally3 each time an image is 
presented. The group with the strongest 
reacting neuron gets its weights reinforced 
in accordance with the image having pro-
voked the response. A complete account of 
this process is given in appendix 2. 

In order to achieve a good result with 
such a training method it is important to 
have a suitable weight distribution at the 
start. A random start configuration easily 
leads to the situation that only one group 
(the one reacting most strongly to the first 
image) is developed, or that all groups de-
velop in the same way. To avoid this I 
started by training the S2-layer in the same 
way as the S1-layer, i.e. I gave each group 
a feature of its own to recognize. The 
weight distributions of each group were 
thereafter normalized. The combinations I 
used for the startout training are shown in 
figure 16. 

The features on this level are different 
combinations of the four features the C1-
groups were trained four. They can be 
combined in 15 different ways, and it is 
these combinations that I have chosen as 
                                                
3Note that all neurons within a group have the same 
weight setup. Therefore we say that groups, not 
neurons, compete with each other. 
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starting point in the training. One could 
have chosen many other combinations (not 
only built on the C1-features), as long as 
the different S2-groups differ at the 
beginning of the self organizing part of the 
training process. 

Since the dimensions of the C1-groups  
are 11*11 pixels, an S2 local receptive 
field of 6*6 pixels is far too big; it 
wouldn’t be very local. Therefore I have 
made this only 4*4 pixels large. 

 

 
 

Figure 16. The fifteen training patterns 
(each pattern is a row of four smaller pat-
terns) that were used to give the S2-groups 
a start configuration for the self organiza-
tion. 

The point with the self organization is, 
however, that the layer by itself should 
find the most important features on this 
level, and therefore the pre-training must 
not be too strong. Hence, I decreased all 
excitatory synapse strengths, a2, by a 
factor of 3, and set the inhibitory ones, b2, 
to zero before the self organization started. 
This training method is similar to the one 
Fukushima developed in his first version 
of the Neocognitron [9]. 

In order to avoid that the weights to one 
single group grow stronger and stronger, 
and thereby wins every competition 
whether its weight distribution fits the 
input or not, we give the groups a ‘bad 
conscience’. A large bad conscience 
reduces the group’s chances of winning a 
competition. The winner of a competition 
gets its bad conscience increased while the 
others get theirs reduced. 
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Figure 17. The configuration of the fifteen 
S2-groups after self organization. 
 

In order to get every group to specialize 
on one unique feature we apply so called 
lateral inhibition between the groups. This 
means that the response from one group is 
reduced with a certain percentage of the 
sum of the responses from all other 
groups. If a large number of groups 
respond approximately with the same 
strength on one type of input, the lateral 
inhibition will see to it that the signals 
from all these groups are weakened and 
none of them wins the current competition. 
The final weight distribution to the S2-

layer, after self organization, is presented 
in figure 17. 

During the training of the second S-
layer we apply the optical system exactly 
as it will be applied when the whole 
system is in use for pattern recognition. 
This leads to the advantage that the system 
can learn to compensate for possible 
optical aberrations. 

 
 

4.7 The training of the output 
layer 
After having completed the training of the 
two Neocognitron layers, there remains the 
training of the output layer. All of its ten 
neurons are fully connected to all the neu-
rons of the C2-layer. The weights are ini-
tially given small random values, and are 
then trained with a traditional error correc-
tion method, see for instance [1]. The dif-
ferent input patterns are presented for the 
system, and the readytrained Neocognitron 
complexes perform their abstraction. The 
result reaches the output layer which 
calculates a response based on this. The 
actual response is compared to the correct 
answer and the error is used to modify the 
weights. 

The neurons of the output layer give 
continuous output signals, and do not 
have, as is usual in this type of network, a 
sigmoidal4 threshold function. The 
response of the system is the digit 
represented by the loudest output neuron. 
A good measure of the reliability is 
achieved by comparing its output signal to 
those of the other neurons. The correct 
answer is of course that only the neuron 
representing the digit given as input fires 
with maximum strength while the others 
are totally quiet. 

The function of the system is highly de-
pendent on the training set used for the 
output layer. Both the number of training 
                                                
4A sigmoidal threshold function often used is the 
hyperbolic tangent (tanh) function. It is very close 
to a step function which switches between -1 and 1 
when the input changes sign. 
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patterns and their types are of large impor-
tance. With a small number of training pat-
terns the system becomes very good at de-
tecting these but generalizes badly. If one 

increases the number of training patterns it 
takes longer time to train the system, and 
the error may never be as low, but the gen-
eralization capacity is much better.  
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5. The optical imple-
mentation 
 
 

Y COMBINING TWO spatial light 
modulators (cf. figure 18) and a 
CCD camera with a computer, that 

addresses the SLMs in real time as well as 
performs the non-optical part of the neural 
network algorithm, we have constructed a 
generic neural layer. Both input and 
weight setup can readily be changed by 
updating the settings of the SLMs. In this 
way we can implement a virtually 
unlimited number of layers. 

An advantage of using an extra SLM in 
presenting the input, instead of directly 
projecting the input image on the weight 
matrix, is that the optical neural network 
system may be placed free from the detec-
tor. One could for instance send an image 
from a camera carried by an airplane, via 
radio to the rest of the system, placed in a 
stable and protected environment on the 
ground. More than one user can then also 
share the same pattern recognition system. 

 
 

5.1 Optical representation of 
continuous-valued weights 
Since the weights are continuous-valued 
while our SLMs are binary, we must simu-
late grayscale in some way. There exist 
two apparent alternatives which, however, 
both give us a certain quantization of the 
value. The first is to do a spatial 
multiplexing by representing each weight 
by several pixels of the SLM. The weight 
zero corresponds to all pixels set to a light 

blocking state, while the maximum weight 
value is represented by all pixels being 
transparent. In between these limits we can 
have a number of gray levels, the number 
of which depends on how many pixels we 
use for this simulation. 

The other solution is to use time multi-
plexing by reading off the CCD a number 
of times in a row, with updates of the SLM 
in between. The different images are then 
added to each other. A large weight is rep-
resented by a pixel being transparent 
during a large number of exposures, while 
pixels corresponding to small weights are 
black most of the time.  

We have chosen the former alternative 
with 4*4 SLM pixels per weight. From 
now on, when I speak of gray scale pixels, 
I thus mean a kind of macropixel, consist-
ing of 4*4 physical pixels of the SLM. 

We did two different measurements to 
test the performance of this simulation 
method. An account of the results can be 
found in chapter 6. 

 
 

5.2 The optical setup 
A sketch of the optical construction is 
given in figure 19. The first component 
after the light source is a so called beam 
expander, i.e. two lenses separated by a 
certain distance. This component is needed 
to achieve an even illumination of the 
whole image area of the input SLM. 
Normally a light beam has a Gaussian 
profile which means we have to expand it 

B 
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to a diameter much larger than the image 
size of the SLM in order for the intensity 
variation to be of negligible order. 

 

 
 
Figure 18. A Spatial Light Modulator 
(SLM) consists of a liquid crystal cell sur-
rounded by crossed linear polarizers.  
 

Our SLMs consist of the active FLC-
cell surrounded by crossed polarizers 
(polarizer and analyzer), see figure 18. The 
light from the first SLM is linearly 
polarized in the direction set by the 
analyzer of this component. In order not to 
lose more light intensity than necessary, 
the polarizer of SLM no. 2 must be turned 
to this direction. If the retardation of the 
FLC cell is perfectly adjusted to the light 
wave length, the function of SLM no. 2 is 
independent of the direction of the 
polarizer (as long as analyzer and polarizer 
are crossed), but if this is not the case the 
optic axis of the medium must be carefully 
directed relative to the polarizer, in order 
to achieve maximum contrast [7]. 

 
 
 
 

 
Figure 19. The optical part of the pattern recognition system. The picture generated by SLM 
1 is projected onto SLM 2 through the lens L1. The composite picture at SLM 2 is projected 
onto the CCD-camera through lens L2. 
 

On the first SLM, with a resolution of 
128*128 binary pixels, we set a pattern 
corresponding to the input of the current 
layer. Since we have limited ourselves in 
our system to binary input neurons, each 
neuron can be represented by one pixel in 
the SLM pattern. If the neuron fires, the 
pixel is transparent, otherwise it is dark. 

The picture produced by illuminating 
the modulator is projected through a lens 
on a larger SLM. Its 320*320 pixels are set 
to represent the weights between the 
current input and the S-neurons. Another 
lens projects the combined picture on a 
CCD camera which records the intensity 
of each pixel. This is proportional to the 

product of input and weights. By the virtue 
of this process the computer is relieved of 
a large part of its computational burden. 

In order to simulate our Neocognitron 
system of two complexes we start by 
showing the input of the whole system (a 
picture of a digit) on the first SLM and the 
weights to the first S-layer on the second 
SLM. The output of the camera is 
transmitted to the computer which carries 
out the remaining calculations of equation 
(2) in appendix 3, and when this is ready it 
calculates the C1-layer internally. After 
that the output of the C1-layer is set on the 
first SLM, since this constitutes the input 

L2 (focal length=f2)
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Beam expander
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to the S2-neurons, and the S2- and C2-
layers are calculated in the same manner. 

The pixel size of SLM no. 1 is 220*220 
µm2  and in SLM no. 2 the pixels are 
80*80 µm2. The camera has 500*500 
pixels of 8*12 µm2  area. The difference in 
pixel size forces us to enlarge and reduce 
the image in between different stages of 
the process. Projection of the relatively 
large images on each other requires lenses 
of rather large diameter. The tolerance 
limits for distortion in the system are also 
very narrow, so the demands on the optics 
of the system are rather high. 

For the calculation of the first S-layer 
each input pixel should be projected onto 
3*3 weight pixels a time, and during the 
calculation of the S2-layer the relationship 
is 1 onto 6*6 (see appendix 1). In using 
2*2 pixels of the first SLM for each input 
neuron during the latter calculation, we 
can retain the same magnifying ratios and 
therefore the same physical setup in both 
cases. 

Since each weight pixel uses 4*4 pixels 
for the grayscale simulation, 3*3 weight 
pixels take up 12*12 physical pixels of 
SLM no. 2. Lens no. 1 in figure 19 must 
thus project a 220*220 µm2  pixel on an 
area made up of 12*12 quadratic pixels, 
each 80 µm wide, that is on 960*960 µm2. 
Hence, the lens should magnify the pattern 
of the first SLM 4.36 times in projecting it 
on the plane of the other SLM. 

When projecting the image of the 
second SLM on the plane of the CCD 
camera, the rectangular pixel shape of the 
latter posed a problem. Either a cylindrical 
lens may be used to extend the quadratic 
SLM pixels to the same proportions as the 
camera pixels, or one can treat several 
CCD pixels together and in this way get 
quadratic ‘macro pixels’. We chose the 
latter solution and treated 2*3 physical 
CCD pixels as a macro pixel  of 24*24 
µm2  area. 

Each weight pixel in the second SLM 
(that is 4*4 real pixels) should thus be pro-
jected onto a macro pixel in the CCD cam-
era which gives us a size ratio of 320*320 

µm2 to 24*24 µm2. Hence, the right lens of 
figure 19 must reduce the image 13.3 
times in size. 

The distances between different compo-
nents follow from the set of equations be-
low. The upper row is the Gaussian lens 
formula which says that if a lens of focus f 
is placed at a distance so from an object, 
the image of the object will appear on the 
distance si from the lens. The lower row 
gives the relation between the degree of 
magnification MT and the distances so and 
si. 

 
1
so

+
1
si

=
1
f

si = MT ! so

" 
# 
$ 

 (4) 

 
Lens no. 1 has a focus of 300 mm and lens 
no. 2 of 50 mm. With the magnification 
degrees we desire we get the following 
geometric relationships (l2 is expressed as 
a function of l1 and MT by aid of the lower 
row, and is inserted into the Gaussian lens 
formula, and so on). 
 

l1 =
5,36
4, 36

* f1 =
5, 36
4, 36

* 300 = 369mm  

l2 = 4,36 * l1 =1609 mm  
l3 = 14, 3* f 2 =14, 3* 50 = 715 mm  

l4 =
14, 3
13,3

* f2 =
14, 3
13,3

* 50 = 53, 75 mm
 

 
 
 

5.3 Time multiplexing  
The local receptive field of each S-neuron 
is at the most 6*6 pixels large. Hence we 
get up to 36 neurons per group which are 
connected to one input neuron (see 
appendix 1), and from this there are thus at 
most n*36 synapses, where n is the 
number of groups in the S-layer under 
study. If every input pixel could be 
projected onto n*36 grayscale pixels 
simultaneously, all multiplications could 
be carried out in one single step. One way 
of doing this is illustrated in figure 20. 
Here we have used the excessive 
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resolution of the first SLM to produce one 
input image for each S-group. The weights 
of each S-group are then gathered in a cor-
responding region of the second SLM.  
 

 
 
Figure 20. One way of simultaneously car-
rying out all multiplications optically. 
 

An input image resolution of 27*27 
pixels means, with our nine S1-groups and 
grayscale simulation taking up 4*4 binary 

pixels per grayscale pixel, that we need 
(27*3*6*4)2  (number of input pixels, 
number of S-groups, number of S-neurons 
connected to the corresponding input neu-
ron, number of grayscale pixels per side) 
equal to 1944*1944 pixels in the SLM on 
which we should produce the weight 
mask! It is evident that, with our 
maximum resolution of 320*320 pixels, 
we cannot realize such a setup. Instead we 
have to exploit the dynamics of the 
modulators and use time multiplexing, i.e. 
during the computation of one layer we 
update the SLM several times. There are 
several ways of realizing this. Our choice 
is described in appendix 1. 
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S A FULL-SCALE realization of our 
pattern recognition system is too 
large a project to fit within the 

framework of a diploma project, we chose 
to simulate the whole system in Matlab. In 
addition we made measurements verifying 
the function of two crucial parts of the 
optical setup. We tested how well our way 
of simulating grayscale worked and we 
tried projecting the patterns of the two 
modulators onto one another and onto the 
CCD camera. 

 
6.1 The projection system 
Basically the setup we constructed is the 
same as that shown in figure 19, but for 
the sake of simplicity we sometimes chose 
solutions which would not work in a real 
system. For instance, in order to get suffi-
cient light intensity,  we used a red He-Ne 
laser with wavelength 632.8 nm as primary 
light source. This has some distinct draw-
backs in our amplitude modulating setup 
since the coherence of the laser light gives 
rise to a number of undesired interference 
phenomena. 

In order to realize our optical system, 
which in its entire length would not fit on 
our optical bench, we were forced to use 
two mirrors. Since dust, fat and dirt on the 
optical components of the setup have a 
large impact on the performance of the 
system, the number of components should 
be kept at a minimum. In a final version of 
our system the mirrors should therefore be 
removed. 

 

 
 
Figure 21. In testing the projection tech-
nique we built a modified version of the 
setup in figure 19. 
 

The lenses of the beam expander were 
not of the best quality. This gave a distinct 
effect as aberrations on the final image re-
corded by the CCD camera. 

It turned out to be difficult to achieve 
just the right degree of magnification 
between the different steps. All 
components have a certain thickness which 
complicates the exact distance 
measurements needed to realize the 
theoretically constructed system. For our 
tests we settled with magnifying powers 
close to the desired. 

In our test of the projection system we 
showed two different images on the modu-
lators. The result is shown in figure 22. 
Apart from the image of the two 
superposed SLM patterns, we also show 
the image recorded by the camera when 
one, or both, of the modulators were 
cleared, as well as when one or both 
modulators were removed from the setup. 
These images are added to clearly 
demonstrate the contributions of each 
SLM in its different states. 

A 
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Figure 22. The upper row shows the superposition of the two modulator patterns. In the first 
picture the 320*320 modulator is cleared and a pattern is set on the 120*120 modulator. In 
the next the latter is cleared and the former is set to show a different pattern. The upper right 
picture shows the image obtained when both SLMs are set with patterns. The ratio in pixel 
size between the images of the two modulators is approximately the one desired for use in the 
neural network.  

In order to give an idea of the unwanted contributions to the final image from the 
different components, we show in the lower row the image obtained without modulators, with 
only one (cleared) modulator, and with both modulators cleared, respectively. In the first 
picture we have inserted an extra transmission filter since the CCD camera would otherwise 
get overexposed. A large part of the undesired effects seen are interference effects and would 
disappear if the light were incoherent. 

 
 
6.2 Simulation of grayscale 
Since our modulators lack grayscale we 
have to simulate this in some way when 
implementing the continuousvalued weight 
mask. We chose the method described in 
chapter 5.1. 

The number of SLM pixels per 
grayscale pixel sets the number of levels in 
which the weights are quantized. To find 
the lowest number of simulation pixels 
which gives reasonable performance I 
made simulations with different number of 
quantization levels, as well as with 

continuous weight values, and studied the 
response from the S2 groups to the same 
input. The result is presented in figure 23. 
It turned out that already with 10 
quantization levels, that is 3*3 SLM pixels 
per grayscale pixel, we got the same 
answer as with continuous weights. At the 
start of the project the algorithm was 
however slightly different, and I got 
deviations at this level. Hence, I have used 
4*4 pixels for grayscale simulations in my 
system. 
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Figure 23a. The output of the S2-layer 
when the input is the digit 5 in the font 
Monaco. The weight mask has no 
grayscale, i.e. we have binary weights. 

 
Figure 23b. As in a) but with five level 
grayscale. 

 
Figure 23c. As in a) but with ten level 
grayscale. 

 
Figure 23d. As in a) but with seventeen 
level grayscale. 

 
Figure 23e. As in a) but with continuous 
grayscale. 

 
We thus use 4*4 pixels of SLM no. 2 to 

represent one weight. These 16 pixels 
should be projected onto one pixel of the 
CCD camera5 and the intensity recorded 
will attain one of 17 possible levels. If all 
16 pixels are black (the weight value is 
zero) or if the input neuron is silent, no 
light falls on the camera pixel. For each 
pixel of SLM no. 2 which is switched to 
the transparent state, the recorded intensity 
should increase with a fixed value. Finally, 
when all pixels are transparent, the maxi-
mum value should be attained. 

We tested this technique by irradiating 
a part of the modulator (active area: 25*25 
mm) with a 632.8 nm HeNe-laser beam of 
                                                
5In reality we project it upon one ‘macro-pixel’, 
consisting of 2*3 physical CCD-pixels. This is due 
to the rectangular (non-square) pixel shape of the 
camera. See section 5.2. 
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Gaussian cross section and a diameter of 
approximately 3 mm. We wanted to assure 
ourselves that different combinations with 
the same number of transparent pixels give 
the same intensity, as well as that the 
intensity difference when switching one 
pixel really is constant, no matter in what 
part of the grayscale we are. 

In the first experiment we let the whole 
SLM, except for 4*4 illuminated pixels in 
the center, be constantly non-transparent. 
We made 17 measurements with an in-
creasing number of transparent center pix-
els. In the second experiment we repeated 
the same grayscale pattern over the whole 
active area of the SLM 

 

 
 
Figure 24a. The intensity variation as a 
function of the number of transparent SLM 
pixels in one grayscale pixel. 

 

 
 
Figure 24b. As above, but here the 
grayscale pattern is repeated over the 
whole active area of the SLM. 
 

As can be seen in the graphs the 
grayscale simulation seems to be working 
well. The relationship between the number 
of transparent pixels and the light intensity 
is practically linear. 

For each graylevel (that is, a certain 
number of transparent pixels) we also tried 
several different configurations of the six-
teen pixels of the grayscale pattern. The 
intensity turned out to be configuration in-
dependent, just as we desired. 
 
 
 
6.3 The neural network 
algorithm 
The performance of the neural network 
algorithm is evaluated from several 
different points of view. The response of 
the output layer is in all cases used as the 
measure. This is strongly dependent of the 
number of images used to train the layer. 
Therefore we have compared three 
different weight setups to the output layer. 
The first is obtained by training on one 
font only (Courier), the second by training 
on three fonts (of which one is italic) and 
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the third is a result of training with five 
different fonts (one italic). 

In the training of the system I started by 
evaluating all calculations which are re-
quired several times (for instance the 
output of previously trained layers for each 
of the input patterns) and the result was 
saved in a file. When a result was needed 
during the training it could be loaded from 
disk instead of reevaluated, thus saving 
lots of time. 

 

 
 

Figure 25. The seven different fonts used 
for the evaluation of the identification sys-
tem. 

 
For each output layer weight setup we 

analyzed the performance of the system 
with regard to the following abilities: 

 
• How well does the system general-

ize? Can it identify a digit independ-
ent of how it is drawn? Are some 
digits harder than others to identify? 

 
• How sensitive is the system to dis-

placements of the digit to be identi-
fied?  

 
• How does scaling of the digit affect 

the system performance? 
 
• How sensitive is the system to dis-

turbances like noise or erased 
pixels? 

 
 
 

6.3.1. Generalization 
Even though the structure with feature de-
tectors gives good possibilities to find the 
essential features of each digit and 
generalize between different fonts, it is 
quite obvious that the number of training 
fonts is crucial for the performance of the 
output layer. Figures 26-28 show the 
results when we train with one, three and 
five fonts, respectively. Figure 26 shows 
how the total error, i.e. the sum of the 
errors from all neurons of the output layer, 
is changed during the training process. 
Figures 27 to 29 show the response from 
the 10 output layer neurons when digits 
written with the seven different test fonts 
are presented to the system. The leftmost 
bar in each histogram shows the outputs of 
the 0-neuron, the next for the 1-neuron, 
and so on. The number above each 
histogram gives the ratio between the 
highest and second highest output value, 
and hence it is a measure of how certain 
the system is in its answer. For the fonts 
not in the training set of the system, I have 
given the fraction of correct answers. 

Note that in going from figure 27 to fig-
ure 29, the number of test fonts is reduced 
from six, via four, to two. It would of 
course have been a better comparison if all 
systems had been tested with the same 
number of unknown fonts, but as the proc-
ess of preparing training fonts is quite 
time-consuming, I had to settle with a 
compromise in this matter. 

 

 
Figure 26a. Error during training on one 
font (Monaco). 
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Figure 26b. Error during training on three 
fonts (Monaco, Chicago, Times italic). 
 

 
Figure 26c. Error during training on five 
fonts (Monaco, Chicago, Times italic, 
Courier, simple handwritten). 
 

 
Figure 27. Generalization capability after training the output layer with one font (Monaco). 
For each combination of font and digit there is a bargraph illustrating the response of the 
output neurons. The number above each graph is the largest response divided by the second 
largest response. Note that the font which is always correctly classified (Monaco) is the one 
used for training. The result on this font does thus not reflect the generalization capability of 
the system. 
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Figure 28. Generalization ability after training the output layer with three fonts (Monaco, 
Chicago, Times italic). For an explanatory text, see caption to figure 27. 
 

 
Figure 29. Generalization ability after training the output layer with five fonts (Monaco, Chi-
cago, Times italic, Courier, simple handwritten). 
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We see from figure 26 that the error 
very quickly becomes vanishingly small 
when the number of training fonts is low. 
The neurons quickly learn to identify the 
few images used in the training. On the 
other hand, it is apparent from figures 27 
to 29 that the generalization ability is poor 
after such training. The number of 
erroneous identifications is much higher in 
figure 27 than in figures 28 and 29. It is 
also clear that the system gives more 
certain and distinct identifications of digits 
in untrained fonts, as the number of 
training fonts is raised. 

Apart from these general observations 
some small comments to the figures may 
be added. First, we see that the digits 
correctly identified, independent of font, in 
all three systems are the 1 and 4. A 
possible explanation is that they both 
consist almost only of straight lines, and 
hence suit the feature detectors of the first 
S-layer well. Against this hypothesis 
stands the poor performance when the 
digit 7, also practically free from curves, is 
given as input. The most evident 
explanation to this should be the large 
similarity between the 7 and the 2. When 
the system fails to identify a 7, the faulty 
answer is always 2. 

It is apparently much more difficult to 
identify the digits 3 and 5. The many 
curves of the former is probably the 
explanation to the poor performance in 
identifying 3:s. In the case of 5:s this is 
only partly true. The errors might also to a 
large extent be due to the similarity of the 
digit 5 with for instance 3, 6, 8 and 9. 

 
6.3.2. Displacements of the input 
image 
In the remaining evaluation tests we chose 
one input image (the digit 5 in Monaco) 
and distorted it in various ways. The 
general conclusion from these tests is that 
it is practically only the last system 
(trained with five different fonts) that has a 
chance of seeing through the distortions. 
As is evident from the figures below, the 

systems trained with fewer training images 
are extremely sensitive to disturbances of 
all kinds. The following comments all 
concern the best system. 

First we tried moving the 5 around in 
the 27*27 pixel input image, and studied 
how the system reacted. This is in some 
sense a test of the performance of the C-
layer. The result is presented in figures 29-
32. 

 

 
Figure 29. The input digit is shifted step-
wise to the right. 
 

 

 
Figure 30. The input digit is shifted step-
wise to the left. 
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Apparently the system is much more 
sensitive to displacements to the right than 
to the left. Perhaps this changes if a differ-
ent digit is chosen as test object.  

 

 
Figure 31. The input digit is shifted step-
wise downwards and upwards. 
 

The system seems to be more sensitive 
to displacements downwards than 
upwards. Even if the system answer is 
correct in all cases, in particular the 
response of the 3-neuron becomes too 
strong at displacements downwards. 
 

 
Figure 32. The input digit is shifted step-
wise both laterally and vertically. 
 

In diagonal shifts the system initially 
does quite well for all displacement direc-
tions. Already at a shift of two pixels, 
however, the system becomes unreliable. 
 
6.3.3. Scaling 
I tried scaling the 5 in five steps. The sys-
tem was not markedly disturbed by any of 
these changes, cf. figures 33 and 34. 

 

 
Figure 33. The sensitivity to size reduction 
of the input digit. 
 

 
 

Figure 34. The sensitivity to magnification 
of the input digits. 
 
6.3.4. Noise 
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A most interesting test series was the one 
where we disturbed the input with noise of 
various kind. I tried adding an increasing 
amount of random black pixels in the im-
age, I removed an increasing amount of 
pixels in randomly selected parts of the 
digit, and finally I tried removing parts of 
approximately equal size but in different 
places. The result is shown in the 
following three figures. 

 

 
 
Figure 35. The sensitivity to noise in the 
input. 
 

The system handles noisy input surpris-
ingly well. The lower system even gives a 
correct response for the noisiest picture. A 
curiosity is that the confidence of the sys-
tem is largest for the third image. With 
even more noise, however, the confidence 
decreases drastically. 
 

 
Figure 36. Increasing number of erased 
pixels in the input digit. 

 

 
 

Figure 37. One part of the input digit is 
missing. In the different images different 
parts (of approximately the same size) 
have been removed. 

 
Figure 36 offers no surprises. The con-

fidence decreases continually as we 
remove more of the digit. The results from 
the next test are more interesting. We have 
removed different parts, of approximately 
the same size, from the digit, and we see 
that the system reacts very similarly for all 
images but one. In the fourth image the 
system hesitates strongly between a 3 and 
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a 5. If we look at the images the 
explanation to this is apparent. The part 
that has been removed from this picture is 
vital for an unambiguous interpretation of 
the image. Look at figure 38. If instead of 
the removed vertical line we insert a 
diagonal one we get a perfect 3. Hence, we 
can no longer say whether the digit is a 3 
or a 5, and the system responds correctly 
in hesitating between the two answers. 

 
Figure 38. If a certain part of the 5 is re-
moved it is no longer possible to say which 
digit is shown. 
 
 
6.3.5. False inputs 
As a final test we gave the system letters 
as input. A better version of the output 
layer would have 11 neurons, with the 
eleventh representing non-digit inputs. Our 
system does not have this possibility, and 
hence it answers with the digit most 
resembling the input. 

 

 
Figure 39. The reaction on letters as input. 

The reaction on the letter A is, in my 
opinion, rather odd, but the response on 
the other letters is quite understandable. 
The strong response from the 0-, 3- and 8-
neurons on the letter B is not surprising 
since all these letters can, without too large 
modifications, be constructed out of the 
letter. When X is given as input it is the 3-, 
7- and 8-neurons which react strongly, 
which is also quite reasonable. 

 
 

6.4 Optical implementation ver-
sus numerical 
Since I have not been able to implement 
the system optically it is difficult to give a 
good picture of the efficiency of the 
system. The simulated system, which 
simulates the optically implemented 
system, is most probably a lot slower than 
the real optical-numerical system, as well 
as an entirely numerical system, would be. 
It took approximately 3 hours on a very 
powerful computer (twin 150 Mhz Hyper-
Sparc processors, 224 Mbytes RAM) to 
perform the training from scratch, and the 
identification of a digit took more than a 
minute on the same machine. These times 
would probably be much shorter had the 
program been written in a more efficient 
language than Matlab. 

In order to get a picture of the extent to 
which calculations would be performed 
optically in a real system, we have to look 
at the algorithm for calculation of the S-
neuron responses (appendix 3). Let’s study 
how the responses from the 3872 neurons 
of the first S-layer are evaluated. 

First the responses of the 484 neurons 
of the first I-layer have to be calculated. 
This is done according to equation (5) in 
appendix 3. Since each I-neuron is 
connected to 36 input neurons, the 
evaluation of the formula requires 17424 
multiplications and as many summations 
in total. All these multiplications are 
performed optically in my system, while 
the summations are done numerically. 

1.601 1.835 1.012

2.085 1.161 1.801

2.125 1.334 1.19

1 training font

3 training fonts

5 training fonts
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Furthermore, one square root per I-neuron 
is performed numerically. 

For the evaluation of the S1-layer re-
sponse, we use equation (4). The number 
of optically performable multiplications 
per S-group is the same as for the I-group, 
which means we get 139 392 optical multi-
plications in total. The computer performs, 
apart from the summing of the correspond-
ing products, a small number of summa-
tions, multiplications and divisions, as 
well as one max function per S-neuron. 

The result is summarized in table 2. 
 

Table 2. Number of operations of different 
kind during the evaluation of the responses 
from the S1-layer neurons. 
 
 Optical Non-optical 
Multiplications: 156 816 15 488 
Additions:  168 432 
Divisions:  3872 
Square root ex-
tractions: 

 484 

Search for 
maxima: 

 3872 

 
It is apparent from this little study that 

there a significant number of operations 
remain to be done in the computer. Hope-
fully this number can be reduced some-
what. The max function could, for exam-
ple, be performed by a hardware treating 
negative numbers as zero, and it is 
possible that equation (5) in appendix 3 
could be modified so that the square root 
may be avoided. 

The profit of the optical system is that 
the multiplications are performed in 
parallel outside the computer. The width of 
this profit depends partly on the system 
dimensions, and partly on the computer 
processor. In  a modern mathematics 
processor a multiplication is performed 
almost as fast as an addition, while in, for 
instance, an 8-bit Motorola processor it 
takes 32 clock cycles compared to the 2 
needed for an addition. Even in a fast 
processor, however, the multiplications are 
performed in series, and since the number 

of multiplications becomes very large as 
the dimensions of the system increase, the 
time gain of an optical implementation 
might be considerable. A dimensional 
increase of the system must, however, be 
accommodated by an increase in resolution 
of the SLMs. Otherwise we must use time 
multiplexing and the time gain would 
decrease.  
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7. Discussion for further 
work 
 
 

HE OBJECTIVE of this work has been 
to develop a system showing new 
ways of implementing neural net-

works for pattern recognition. The 
ambition has not been to construct a 
system with a particularly high efficiency. 
Nevertheless, I think that some valuable 
conclusions can be drawn from the results. 

The equipment I’ve been using as well 
as the algorithm I developed, suffers from 
a number of important shortcomings, and 
in case of a continuation the system must 
thus be improved in various ways. This is, 
however, by no means an impossible task. 
The SLMs based on ferroelectric liquid 
crystals, which today are state of the art 
and commercially available, feature much 
higher resolution and are much faster than 
the components I’ve been using, and even 
some which also fulfill my demands con-
cerning grayscale are available. Then we 
have good possibilities of constructing a 
fast and well performing system. 

In this chapter I give some ideas on 
how one could further develop the system 
and in this way get a substantial 
improvement in performance. These 
developments concern the software as well 
as the hardware. 

 
7.1 Improvements on the algo-
rithm 
Both in the design and in the training of 
the system a large number of parameters 
figure. Many of these I have given values 
more or less randomly since the time scope 

of the project didn’t allow a thorough 
investigation of their influence. In a 
continuation it might be wise to make a 
deeper analysis of them and to try a larger 
number of different solutions. 

The dimensions of my network have 
been chosen to fit the optical equipment I 
had access to. It would of course be very 
interesting to study the performance of a 
system of different dimensions. A higher 
resolution would for instance allow us to 
use a larger local receptive field. Then we 
could easily define a greater number of in-
teresting features, like for instance curves 
and angles. These tests can be easily per-
formed with the Matlab simulation I have 
developed. 

 
 
7.2 Better Spatial Light Modu-
lators 
Doing an optical implementation is not  
really worthwhile until we have 
continuous instead of binary inputs to each 
layer. First then can we talk about 
performing multiplications optically. With 
the solution proposed in this work it is 
more or less an AND-operation between a 
binary and a continuous matrix that is 
performed optically. To improve the 
situation we need either an SLM with 
grayscale or grayscale simulation using 
time multiplexing. The latter solution  is in 
principle available with the present 
equipment, but the low speed of the 

T 
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modulators would render the system 
practically useless. 

The point in realizing a neural network 
optically in the way I have proposed is that 
a large number of multiplications can be 
performed in parallel and at the speed of 
light. The Achilles heel of the system is 
the connections between the computer and 
the SLMs and the camera. They must be 
made as fast as possible and used as little 
as possible. The spatial resolution of the 
SLMs must therefore be so high  that we 
can perform all multiplications for a 
complex simultaneously, instead of 
dividing them in a multiplexing scheme as 
I have been forced to do. 

If the pixel number of the modulators is 
drastically increased we can also afford to 
increase the resolution of the system, i.e. 
use a larger matrix to describe the images. 
This will of course improve the 
possibilities of obtaining a well 
functioning system. 

Whereas the two SLMs at my disposal 
for this work had 128*128 and 320*320 
binary elements respectively, and a typical 
frame rate of 6 Hz, modern FLC-SLMs are 
approaching 1000*1000 in resolution and 
have frame rates lying between 1 kHz and 
10 kHz. An FLC-SLM with 256*256 pix-
els which allow a continuous (analog) gray 
scale is also commercially available 
(Boulder Non-Linear Systems, USA). 

 
7.3 A new illumination 
technique 
It is very important that the illumination of 
the input SLM is uniform. Using a simple 
beam expander this is hard to achieve, and 
it is therefore desirable to find another illu-
mination method. An exciting alternative 
would be to use a so called kinoform to 
obtain a suitable illumination of the modu-
lator. With the aid of the kinoform we can 
transform an incoming coherent beam into 
a ray matrix of desired dimensions, see 
figure 40 [10]. 

 

 
 

Figure 40. With the aid of a kinoform we 
can divide an incoming beam into a matrix 
of rays. 

 
Each ray has in itself a Gaussian cross 

section and can hence not be used to 
illuminate several pixels, since this would 
lead to an uneven illumination. The point 
is instead to create, with the aid of the 
kinoform, a ray matrix where the ray cross 
section is much less than the smallest pixel 
side of the system, and the distance 
between two rays is the same size as the 
pixel side. In this way each pixel of the 
weight SLM, which has the smallest 
pixels, is illuminated by exactly one ray. 
Each input pixel is illuminated by several 
rays since one input pixel should be 
multiplied with several weight pixels, see 
figure 41! 

By placing a lens after the kinoform we 
can collimate the ray bundle so that the 
rays propagate parallel to each other. If we 
have a tailor-made system where ray 
matrix dimensions, pixel number and pixel 
size are adjusted to each other, we no 
longer need any projecting lenses! The one 
dimensional system of figure 41 is an 
example of this. We see, however, that the 
diameter of the kinoform rays varies in a 
Gaussian fashion. This means that the ray 
matrix is well defined only within a 
limited space. Both modulators, as well as 
the CCD-camera, must therefore be fit into 
this space. 

Since the ray must be significantly 
smaller than a weight pixel (with 
grayscale) in order not to get cross talk 
between pixels, we can no longer use 
spatial gray scale simulations. That 
method is based on the uniform 
illumination of several pixels, and is thus 
ruled out. Therefore we need to use 
sequential grayscale simulation or get an 
SLM with real analog grayscale. As the 
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speed of FLC modulators can be very 
high, even the former alternative may not 
be so bad at all. The bistability of the SLM 
means that only the pixels that should 
change state need to be readdressed. Using 
a smart addressing algorithm, possibly 
inspired from modern techniques for video 
compression (MPEG, Quicktime, etc.) 
where only the parts of the picture 
changing between frames are treated, the 
time needed to prepare the SLM for the 
next exposure can thus be further reduced. 

If in addition we want continuous 
valued input, which of course is desirable, 
the input SLM must be able to show 
grayscale. For this purpose a nematic SLM 
could also be suitable. Its drawbacks, 
mainly the larger pixel size and slower 
updating, lead to no major consequences 
since the pixels of the input modulator are 
large and it is not readdressed as often as 
the weight SLM. 

 

 
 
Figure 41. Optical system without projec-
tion lenses. With the aid of a kinoform and 
a lens we have created a matrix of parallel 
propagating rays. The different 
components must be adapted to each other 
concerning dimensions. Each component 
must also be so thin that the whole 
sandwich is contained within the depth of 
field of the Gaussian rays. 

 
 

 

7.4 Optical implementation of 
the output layer 
Since the output layer is not of Neocogni-
tron type a different technique must be 
used to implement it optically. We now 
run into the difficulty of implementing 
negative weights with an optical system. 
On the other hand, both inputs and outputs 
to this layer are vectors which gives us 
new possibilities of performing both 
multiplications and summations optically 
in a simple way. 

 

 
 

 
Figure 42. An optical vector-matrix multi-
plicator. For the sake of clarity in the 
drawing the dimensions of in- and output 
spaces in the figure are much smaller 
(simplified to a small number of pixels) 
than in our system. 
 

Perhaps the most attractive solution is 
to use the setup of figure 42. This is called 
an optical vector-matrix multiplicator and 
appears frequently in the literature [2,3,5, 
8]. The vector in our case consists of the 
output signals from the C2 layer, while the 
elements of the matrix are the weights 
between the C2 layer and the output layer. 
For the sake of clarity the dimensions of 
the system in the figure are much smaller 
than in our system. 

The input, i.e. the C2 vector, is pre-
sented for instance by a one-dimensional 
horizontal SLM or a LED array, and its 
image is projected through a cylindrical 
lens onto a two-dimensional SLM such 
that each input pixel illuminates one 
column of the weight-SLM. The two-
dimensional weight-SLM must have a 

1 pixel of SLM

Pixels in SLM 2
representing weights
with which the signal
(represented by the
SLM 1 pixel) is to be
multiplied.

CCD-pixels (must be the
same number as in SLM

System with kinoform beam-splitter
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resolution of at least 135*10 grayscale 
pixels (column i in the matrix contains the 
weights from the C2 neuron i to the 10 
output neurons, while row j holds the 
weights from the 135 C2 neurons to output 
neuron j). 

On the other side of the weight matrix 
we place another cylindrical lens, turned 
90 degrees compared to the first. This 
collects the light from one whole row in 
the weight matrix to one pixel of the 
vertical detector furthest to the right in the 
figure. The light intensity falling on pixel j 
becomes: 

 

 I j = ciwij
i=1

135

!  

 

where ci are the 135 C2 signals and wij are 
the weights between them and the output 
neuron j. The output from detector pixel j 
thus corresponds exactly to the output of 
output neuron j, provided that wij>0. Since 
we have negative weights between the C2- 
and the output layer we must divide the 
evaluation in two steps. In step 1 we ad-
dress the SLM with all positive weights 
while the negative ones are set totally 
black. When the detector signal is recorded 
and the result stored away, we instead set 
all positive weights black while the other 
pixels are set according to the magnitude 
of the negative weights. The result from 
this step is subtracted from the previously 
stored data. 
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Appendix 1 
Time multiplexing 
 
 

 
UE TO THE LIMITED resolution of 
the spatial light modulators we 
cannot simultaneously perform all 

multiplications needed for the evaluation 
of one neuron layer. Instead we have to 
divide the task into several steps. There are 
several ways of doing this and I will now 
give an account for the method used in the 
present system. 

 

 
 

Figure A1:1. The upper left-hand corner of 
the input image. The square drawn with 
thick lines shows the size of the receptive 
field. The number in a pixel indicates the 
number of synapses connected to the neu-
ron represented by the pixel. These values 
are a consequence of the way the receptive 
fields of neighboring neurons overlap, and 
the size of the fields (6*6 pixels).  See fig-
ure 5b. 

 
We chose to perform all multiplications 

of one group in the S-layer before starting 
with the next. In this way we minimize the 

number of readdressing of the input SLM. 
During the evaluation of the S1-layer we 
need no readdressing, while on the other 
hand, during the evaluation of the S2-layer 
we have to readdress the input-SLM once 
for each group in the C1-layer, since all of 
the groups constitute the input for the S2 
neurons. 

The image constituting the input to the 
first S-layer is set on the first SLM. Since 
each input neuron is connected to between 
1 and 36 S-neurons (the number decreases 
towards the edges of the image, see figure 
A1:1) every pixel in this SLM must be 
projected onto a 6*6 pixel area of the 
weight-SLM. With an input image 
resolution of 27*27 pixels and a grayscale 
simulation using 4*4 pixels for each S-
neuron we would hence need a weight-
SLM with 27*6*4=648 pixels per side. As 
the SLM used in the present system has a 
resolution of only 320*320 pixels we have 
to perform a time multiplexing also for 
each S-group. 

We do this by dividing the 6*6 pixel re-
ceptive field into 4 parts of 3*3 pixels and 
addressing the whole weight-SLM with 
one such part at a time.6 The procedure is 
illustrated in figure A1:2. We must thus 
readdress the weight-SLM four times per 
S-group during the evaluation of the S1-
layer. The input-SLM, on the other hand, 
                                                
6In fact, this also puts too high demands on our 
SLM since we would need a resolution of 324*324 
pixels. We do a little bit of cheating, however, and 
use only 3*3 SLM pixels for the grayscale pixels in 
two rows along the edges of the image. 

D 
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needs to be addressed only once, so all in 
all the evaluation of the S1-layer comprises 
4*9=36 readdressing of SLM no. 2. 

When evaluating the S-layer of the sec-
ond complex the four groups of the C1-
layer constitute the input, and hence we 
have to display these, one after the other, 
on the first modulator. For each C1-group 
we readdress the weight-SLM once for 
every group in the S2-layer since the 
weights to different groups are not the 

same. Multiplexing of the synapses to one 
group is, however, not needed this time 
since the C1-groups only have 11*11 pix-
els. With a receptive field of 4*4 pixels 
and grayscale simulation using 4*4 pixels 
we need (11*4*4)* (11*4*4)=176*176 
pixels in the weight-SLM, which is well 
within the capabilities of the modulator at 
our disposal. 

 

 
 

Figure A1:2. Due to the limited resolution of our weight-SLM we must divide the evaluation 
of each group in the S1-layer into four timesteps. In each step we display 9 of the 36 weights 
on the weight-SLM. The partial sums are temporarily stored between the ”snap-shots” and 
are added together at the end to yield the final result. 
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Appendix 2 
The training of the  S2-
layer 

 
 

HE SECOND S-LAYER is divided into 
15 groups. As in the first S-layer, 
the neurons of a group have the 

same synaptic weight setup, but while the 
input to the S1-layer is the system input 
(i.e. the image of the digit to be identified), 
the input to this layer consists of the C1-
layer. Since this is divided into four 
groups, each signaling for one feature in 
the input image, the features to be 
recognized by the S2-neurons are 
combinations of features extracted by the 
first complex. 

The goal of the training of the S2-layer 
is to force each of its different groups to 
specialize in one such combination. It is, 
however, no simple task to come up with 
15 suitable combinations, and therefore we 
want the groups to search for them on their 
own. In this appendix I give a detailed re-
view of how this self-organization is per-
formed. 

 
 

A2.1 The groups compete 
against each other 
Our version of self-organization is based 
on the one used by Fukushima in his first 
Neocognitron version [9]. At the start the 
S2-layer is given the weight setup 
described in section 4.5, that is each group 
is slightly inclined towards a combination 
of ‘clean’ C1-features (see figure 15). 
During the training of the groups of the S2-
layer, images of digits, one at a time, are 

presented to the system. The first complex, 
for which the training is completed, 
performs its preprocessing and the outputs 
of the C1-neurons are given as input to the 
S2-layer. These neurons evaluate a 
response based on the weights they have 
for the moment. 

 
 

Figure A2:1. Each competition is between 
the 15 neurons which constitute a pile, i.e. 
those with the same position within their 
respective groups. 
 

Due to the local connections from the 
C1-layer, the input to a neuron will depend 
on its position within the group; each 
neuron sees only a fraction of the C1-layer. 
Neurons in different groups but at the 
same position, on the other hand, have 
exactly the same input. Therefore it is 
fitting to let the 15 neurons in such a ‘pile’ 
(see figure A2:1) compete with one 
another. The neuron with the strongest 
response is considered to have the best 
adapted weights for the input to the pile, 

T 
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and therefore we update its weight setup, 
and hence the weight setup of the whole 
group, such that its predilection for this 
particular kind of input is further 
enhanced. 

Since we practice weight sharing within 
the groups this strategy must, however, be 
somewhat developed. Different piles can 
have completely different input, but this 
does not prevent the same group from win-
ning competitions in several piles. Since 
our objective is to specialize every group 
in only one feature we cannot update the 
weights every time one of its neurons wins 
a pile competition. Therefore we also let 
the neurons within a group compete, such 
that among the neurons having won pile 
competitions it is the one with the 
strongest response that is chosen as 
representative for the group. The weight 
setup is updated in accordance with the 
input seen by this neuron. 

 
 

A2.2 Lateral inhibition and bad 
conscience 
Lateral inhibition means that competing 
neurons inhibit each other. I have practiced 
this during each pile contest in such a way 
that the response from one neuron is low-
ered by the sum of the outputs of the other 
neurons multiplied by a certain factor 
(0,05 in my case). The purpose is to 
strengthen the diversification between the 
groups, i.e. making them specialize in 
different features. If all 15 groups react 
with approximately the same strength the 
lateral inhibition will secure that the 
neuron winning the pile contest has a small 
chance of also winning the contest within 
its group. This is desirable since we want 
the weight setup of every group to be 
changed towards one which differs from 
that of the others. It is then a bad idea to 
update the weights in accordance with an 
input which triggers the other groups 
almost as strongly. 

A risk with self-organization is that the 
two or three groups winning the first few 

competitions quickly grow so much 
stronger than the other groups that they 
win all competitions, no matter what the 
input is. In order to avoid this I use a trick 
which is well known in this context – I 
give the groups a ”bad conscience”. This is 
implemented by introducing a variable for 
each group holding the magnitude of its 
conscience. During the pile contests the re-
sponse of each neuron is reduced by the 
bad conscience of the group before being 
compared to the corresponding values of 
the other competitors. After a weight 
update the bad conscience value of 
updated groups is increased, while it is 
reduced for all others. A group which has 
had its weights updated will thus have a 
harder time winning the next contest since 
its conscience value has been increased. 
 
A2.3 Updating of the weights 
When all competitions centered around 
one input image are finished it is time to 
update the weights. The updating 
algorithm is taken from Fukushima’s self-
organizing Neocognitron [9]. 

I go through the groups one after the 
other. Every group which has won one pile 
contest is updated in accordance with the 
fragment of the input image seen by the 
group representative. The input matrix de-
scribing this partial image is transformed 
into a row vector by adding the second 
row to the end of the first, and so on. This 
vector is then normalized. The excitatory 
synapses are updated according to the 
following equations: 
 

aij ! aij +"aij
"aij = q2 # ui $aij( )
% 
& 
' 

  (2) 

 
The vector aij contains the weights from 
the C1-layer to group no. j of the S2-layer, 
and ui is the normalized input vector. The 
factor q2 is the training speed. Since the S-
layers are of the same kind I use the same 
notation as in equation 1. Note, however, 
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that variables now refer to the weights and 
input to the second S-layer. 

The group’s inhibitory synapse is of 
course also updated. This is done 
according to the following rule 

 
bj ! bj +"bj

"bj = q2 / 2 # $ % bj( )
$ = ci # ui

& 

' 
( 

) 
( 

 (3)

 
 

The vector ci contains the fixed normalized 
weight setup to the inhibitory group of the 
second S-layer. This vector is made such 
that the weight setup to each C1-group has 
the look of figure 9. 
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Appendix 3 
The response algorithm 
of the S-neurons 

 
HE RESPONSE FROM the neurons of 
the S-layer is calculated with the 
following, perhaps a bit deterrent, 

equation [4]: 
 

    

 

usl k,n( ) = rl ! " x( ) =

= rl !"
1+ al # ,$,k( ) ! uCl%1

# ,n +$( )
$&receptive field
'

# =1

KCl%1

'

1 +
rl

1+ rl
! bl k( ) !$ l n( )

%1

( 

) 

* 
* 
* 

+ 

, 

- 
- 
- 

(4) 

 
The indices S and C indicate the type of 
neuron and the subindices indicate which 
complex (1 or 2) it belongs to. The letter k 
is used to index groups of the S-layer, 
while ! is used for groups of the input 
layer. The vector n indicates the position 
within the group of the neuron. Let us 
spend a couple of lines to motivate the 
form of this important equation. 

The function !(x)=max(0,x) ensures 
that the neuron does not give a negative 
response. The summation in the numerator 
is a scalar product between the input and 
the weight setup. In our optically 
implemented system, the products 

 
 al !, ",k( ) #uCl$1

!,n + "( )    
 

are calculated by means of optical proc-
esses. The first summation is done over all 
groups of the preceding C-layer, and the 
second over the local region of each group 

to which the neuron is connected. The vec-
tor "  is changed during the summation in 
order to cover the whole receptive field 
(see figure 5b). The equation is general 
and applies to all S-layers, but for the first 
complex the first summation sign is 
unnecessary since the summation is over 
the groups of layer C0, i.e. the system 
input, where, of course, the number of 
groups is 1. 

In the denominator the weight bl(k) and 
the value vl(n) appear. The latter is the out-
put from the I-neuron which is 
geometrically equivalent to the S-neuron. I 
will presently discuss how this is 
evaluated. The weight bl(k) is the strength 
with which the inhibitory sister neuron 
affects the response from the S neuron. 
The factor rl sets the feature selectivity of 
the neurons in the group. 

The response from the inhibitory neu-
rons is calculated according to equation 
(5): 

 

v l n( ) = c !( ) " uC l#1
$ ,n+ !( )

!%receptive field
&

$ =1

KCl#1

&   

(5) 
 
The notations reappearing from equation 
(1) have the same meaning as there. The 
weights c(") are those leading to the in-
hibitory group. In contrast to the weights 
a(") of the excitatory neurons, the inhibi-
tory weights are not the result of training. 

T 
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They are fixed from the beginning such 
that their sum equals one and distributed 
so that the weight values are greatest in the 
center of the perceptive field, decreasing 
towards the edges.  

In the original model of Fukushima, 
where the inputs can be continuousvalued, 
the C-weights are multiplied with the 
square of the input signals. In our 
simplified model we limit ourselves to 
binary input signals for which taking the 
square has no effect. We therefore leave it 
out of our calculations. 
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Appendix 4 
Matlab files 

 
 
A4.1 The three main training files 
 
A4.1.1 Start.m 
 
%In this part we define all general variables and train the first S-layer. 
 
 
 
%------------------------ 
%INITIALIZATION OF VARIABLES 
 
clear 
graypix=4;     %Side of one grayscale pixel 
s1viewsize=6;     %Each S1-neuron is connected to s1viewsize~2   
      %neurons in the input layer. 
s2viewsize=4;     %Each S2-neuron is connected to s2viewsize~2   
      %neurons in the C1 layer. 
inpside=27;     %side of input matrix 
 
groupsins1=8;     %Number of groups in layer S1. 
groupsinc1=groupsins1/2;   %Number of groups in layer C1. 
groupsins2=15;    %Number of groups in layer S2. 
groupsinc2=groupsins2;   %Number of groups in layer C2. 
   
s1side=inpside-s1viewsize+1;  %Side of a group in S1. 
s1=zeros(s1side*groupsins1,s1side);  
      %The groups in a layer are stored above 
      %each other in one matrix, that is s1 
      %is a column of groups. 
s1toc1=2;     %Side of the area in S1 which is compressed 
      %into one pixel in C1. 
c1side=s1side/s1toc1;    %Side of a group in C1. 
c1=zeros(c1side*groupsinc1,c1side); 
      %C1-matrix. 
s2side=c1side-s2viewsize+1; %Side of a group in S2.  
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s2=zeros(s2side*groupsins2,s2side);  
      %S2-matrix. 
s2toc2=2;     %Side of the area in S2 which is compressed 
      %into one pixel in C2. 
c2side=s2side/s2toc2;    %Side of a group in C2. 
c2=zeros(c2side*groupsinc2,c2side); 
 
r1=2;      %Selectivity of S1-neurons. 
r2=3;      %Selectivity of S2-neurons. 
 
outputsize=10;    %Number of possible outputs. 
output=zeros(1,outputsize);   %Matrix to store output. 
 
weightstos1=zeros(groupsins1+1,s1viewsize^2+1); 
      %Each row holds the weights for one group. 
      %The uppermost row of its field of view comes 
      %first, followed by the second and so on. 
      %Last comes the weight to the inhibitory group. 
      %The weights to this group are stored in the 
      %last row of the matrix.  
weightstos2=zeros(groupsins2+1,groupsinc1*s2viewsize^2+1); 
      %All groups in C1 are connected to each neuron 
in       %S2. 
weightstooutput=zeros(outputsize,groupsinc2*c2side^2); 
      %Each row holds the weights from all neurons 
      %in C2 to one outputneuron. 
 
SLM11=zeros(inpside*3);   %During computation of S1 only 3x3-parts of  
      %the 6x6-views can be treated at once. 
SLM21=zeros(c1side*6);   %During computation of S2 the whole 6x6 views  
      %can be treated at once, but each C1-group must 
      %be treated separately. 
 
weightstos1(groupsins1+1,:)=getfixweights(s1viewsize,1); 
weightstos2(groupsins2+1,:)=getfixweights(s2viewsize,groupsinc1); 
      %The function we call calculates the weights 
      %to the inhibitory group. 
%------------------------------------- 
 
 
 
%--------------------------------------- 
%TRAINING OF THE WEIGHTS TO S1 
%The first S-layer is trained "directly". 
 
getS1set;     %The trainingset is formed in a separate file. 
 
%Now we can train the weights to S1. 
q=10;      %Training efficiency. 
c=weightstos1(groupsins1+1,1:s1viewsize^2); 
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for pic=1:size(trainingset,1) 
   u=trainingset(pic,:); 
   deltaa=q*c.*u; 
   v=sqrt(c*u'); 
   deltab=q/1.5*v; 
   weightstos1(pic,:)=[deltaa deltab]; 
end %pic 
clear trainingset 
%---------------------------------------- 
  
cd matfiles 
save startresult 
cd .. 
 
 
 
A4.1.2 Selforg.m 
 
%SELF ORGANIZATION OF WEIGHTS TO S2 
 
clear 
cd matfiles 
load startresult 
cd .. 
pretrains2;      %Before self organising starts we give  
       %the weights a good starting point by  
       %training them in a similar manner to  
       %how we trained the weights to S1. 
 
%------------------------------ 
%INITIALIZATIONS 
q2=0.8;      %Training speed. 
genericname2='.raw.tab'; 
deltaconscience=0.05; 
%After winning a contest the conscience of the group is increased =>  
%=> its chances of winning the next contest decrease. 
 
 
%----------------------------- 
%NOW BEGINS THE SELFORGANIZATION 
%In this version we update all groups after each input-image is gone through. 
 
conscience=zeros(groupsins2,1); 
sopreproc; 
 
for lap = 1:40 
   indexvector=shuffle(outputsize);   %Shuffles the pictures.    
 
   for picturenumber=1:length(indexvector) 
      %Read input picture. 
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      index=num2str(indexvector(picturenumber)); 
    
      r=rand; 
      %randomize style of training picture. 
      if r<0.33 
         style='min'; 
      elseif r<0.66 
         style='ch'; 
      else 
         style='co'; 
      end %if 
    
      name=[style index 'c1']; 
      cd opticresults 
      load (name) 
      cd .. 
      opts2; 
 
      %Time for the contest. 
   contest; 
          
      %We now have the representatives for each group. Time to update  
   %the weights. 
   update15groups; 
         %This procedure also updates the 
       %conscience-values. 
    
   end %picturenumber 
   q2=q2*0.95; 
          %After each lap the trainingspeed 
       %is lowered. 
end %lap 
 
cd matfiles 
save selforgresult 
cd .. 
 
 
 
A4.1.3 Trainoutput.m 
 
%This version trains on the following pictures: 
%mon, ch, timk 
%It runs 2000 laps. 
 
clear 
cd matfiles  
load selforgresult 
cd .. 
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weightmagnitude=0.01; 
weightstooutput=(rand(outputsize,groupsinc2*c2side^2+1)-.5)*weightmagnitude; 
       %Each output pixel is connected to each  
       %pixel in c2 and to a fixed 1-neuron. 
eta=.01;      %Training speed. 
decayfactor=0.999;     %Speed is reduced by this factor 
       %after each lap. 
alfa=.2;      %Momentum influence. 
mom=zeros(size(weightstooutput));   %Matrix where we store old weights. 
 
 
%Do the preprocessing (repeated optical evaluations) first. 
outpreproc; 
 
%Now for the outputtraining 
for lap = 1:2000 
   indexvector=shuffle(outputsize);   %Shuffles the pictures. 
       
   for curpic=1:outputsize;    
    %Randomize style 
   r=rand; 
      if r<0.33 
         style='mon'; 
      elseif r<0.66 
         style='ch'; 
      else 
         style='timk'; 
      end %if 
    
      name=[style num2str(indexvector(curpic)) 'c2']; 
   cd opticresults 
   load (name) 
   cd .. 
      contoutput; 
       
      %Now we evaluate the errors. 
      correct=zeros(outputsize,1);    %Vector to which we compare  
          %the output of the system. 
      correct(indexvector(curpic)+1)=1;   %Output is indexed by the value 
+1, 
          %that is zero is stored in 
output(1). 
      outerror=correct-output; 
   errmat(lap)=sum(outerror);    %The errors during training 
          %are stored in this matrix. 
      delta=outerror*c2c'; 
      weightstooutput= weightstooutput+eta*delta+alfa*mom; %Update. 
   mom=eta*delta; 
   end %curpic 
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   eta=eta*.decayfactor; 
end %lap 
    
cd matfiles 
save monchtimk2000 
cd .. 
 

 
A4.2 Help files in alphabetical order 
 

 
A4.2.1 Contest.m 
 
%Time for the contest. 
 
contestsize=5;   
%In each group 5x5 cells compete against each other. 
latinhibfactor=.05; 
%During the competition all groups inhibate each other laterally. 
allwinners=zeros(groupsins2,3);  
%Value, row and column of winning neuron for each group. 
 
for row=1:s2side-contestsize+1     
   %loop over rows of neurons 
   for column=1:s2side-contestsize+1    
   %loop over columns of neurons 
   %Now the pillar is fixed and the groups compete with each other.  
   %The group within this pillar which has the largest output 
   %gets its weights updated. 
   pillarwinner=[0 0 0 0]; 
   %value, x, y, and group of the winner within the pillar. 
   for group=1:groupsins2      
   %loop over the excitatory groups in s2 
   onegroup=getgroup(group,s2); 
   uplimit=row; 
   downlimit=row+contestsize-1; 
   leftlimit=column; 
   rightlimit=column+contestsize-1; 
   groupsample=onegroup(uplimit:downlimit,leftlimit:rightlimit); 
   %groupsample contains the neurons of one group in the  
   %current contest. 
   [m,y]=max(groupsample); 
   %m is a vector of max values for each column, y contains  
   %the row numbers. 
   [m,x]=max(m); 
   %m holds the value and x holds the column in the sample. 
   y=y(x);   %y holds the row in the sample. 
   %Now let's implement the lateral inhibition. 
   for latinhibgroup=1:groupsins2 
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            if latinhibgroup~=group 
               latgroup=getgroup(latinhibgroup,s2); 
      m=m-latinhibfactor*latgroup(y,x); 
   end %if 
         end %latinhibgroup 
    
   %Were the weights the best for this feature, 
   %or do other groups have better weights? 
   if m-conscience(group)>pillarwinner(1)  
            pillarwinner=[m row+y-1 column+x-1 group];  
   %Update winner. 
   end %if 
      end %group 
    
   %We've gone through the pillar. Time to update the  
   %contest protocol. 
   group=pillarwinner(4); 
   if group>0 
         if pillarwinner(1)>allwinners(group,1)                     
            allwinners(group,:)=pillarwinner(1:3);    
         end %if   
      end %if 
   end %column 
end %row 

 
 
 

A4.2.2 Contoutput.m 
 
%evaluate continuous output. 
 
evaluatec2c; 
%Presents c2 in column form. 
 
output=weightstooutput*c2c; 
 

 
 

A4.2.3 Discreteweights.m 
 
%A routine to change a continuous weightmatrix into one with weights quantized  
%in 17 discrete steps. 
oldmatrix=weightmatrix; 
resolution=graypix^2+1 
upperlimit=max(max(weightmatrix)); 
if upperlimit>0 
   stepsize=upperlimit/(resolution-1); 
   tempmatrix=round(weightmatrix/stepsize); 
   weightmatrix=stepsize*floor(tempmatrix); 



Appendix 4. Matlabfiler 
 

53 

end %if 
 
 

A4.2.4 Evaluatec1.m 
 
%Evaluate the first C-layer. 
 
%We begin by constructing four matrices holding the 'corners' in all 
%the fields of view. 
pixel1=s1(1:2:size(s1,1),1:2:size(s1,2)); 
pixel2=s1(2:2:size(s1,1),1:2:size(s1,2)); 
pixel3=s1(1:2:size(s1,1),2:2:size(s1,2)); 
pixel4=s1(2:2:size(s1,1),2:2:size(s1,2)); 
 
threshold=0.5; 
%Now we compare each pixelvalue with the threshold-value. 
pixel1=max(0,pixel1-threshold); 
pixel2=max(0,pixel2-threshold); 
pixel3=max(0,pixel3-threshold); 
pixel4=max(0,pixel4-threshold); 
 
%Now we construct an intermediate C1-layer. 
cint=zeros(c1side*8,c1side); 
%Time for the OR-function. 
cint=pixel1|pixel2|pixel3|pixel4; 
 
%Now we evaluate the final C1-layer. The groups of cint are 
%paired two by two. 
 
cone=getgroup(1,cint); 
ctwo=getgroup(2,cint); 
ctot=cone|ctwo; 
c1=putgroup(ctot,1,c1); 
 
cone=getgroup(3,cint); 
ctwo=getgroup(4,cint); 
ctot=cone|ctwo; 
c1=putgroup(ctot,2,c1); 
 
cone=getgroup(5,cint); 
ctwo=getgroup(6,cint); 
ctot=cone|ctwo; 
c1=putgroup(ctot,3,c1); 
 
cone=getgroup(7,cint); 
ctwo=getgroup(8,cint); 
ctot=cone|ctwo; 
c1=putgroup(ctot,4,c1); 
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A4.2.5 Evaluatec2.m 
 
%Evaluate the second C-layer. 
%We begin by constructing four matrices holding the 'corners' in all 
%the fields of view. 
pixel1=s2(1:2:size(s2,1),1:2:size(s2,2)); 
pixel2=s2(2:2:size(s2,1),1:2:size(s2,2)); 
pixel3=s2(1:2:size(s2,1),2:2:size(s2,2)); 
pixel4=s2(2:2:size(s2,1),2:2:size(s2,2)); 
 
c2threshold=.4; 
 
%Now we compare each pixelvalue with the threshold-value. 
pixel1=max(0,pixel1-c2threshold); 
pixel2=max(0,pixel2-c2threshold); 
pixel3=max(0,pixel3-c2threshold); 
pixel4=max(0,pixel4-c2threshold); 
 
%Time for the OR-function. 
c2=pixel1|pixel2|pixel3|pixel4; 
 
 
A4.2.6 Evaluatec2c.m 
 
%Turns the c2 layer into a column vector. 
 
c2c=ones(groupsinc2*c2side^2+1,1)*(-1); 
%The last component is for the threshold value. 
 
for group=1:groupsinc2 
   onegroup=getgroup(group,c2); 
   for row=1:c2side 
      groupstart=(group-1)*c2side^2; 
      c2c(groupstart+(row-1)*c2side+1:groupstart+row*c2side)=onegroup(row,:); 
   end %row 
end %group 
 
 
A4.2.7 Fillmatrix.m 
 
function big=fillmatrix (unitmatrix,fillsize) 
%unitmatrix is a square matrix which size must  
%a factor in fillsize. 
 
small=length(unitmatrix); 
for row=1:small:fillsize 
   left(row:row+small-1,1:small)=eye(small); 
end %row 
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halfway=left*unitmatrix; 
 
for col=1:small:fillsize 
   right(1:small,col:col+small-1)=eye(small); 
end %col 
 
big=halfway*right; 
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A4.2.8 Getfixweights.m 
 
function fixweights=getfixweights(viewsize,groups) 
 
%This function calculates the weighs to the inhibitory group. 
 
w=1; 
s=viewsize; 
total=0; 
 
while s>1 
   total=total+w*(s^2-(s-2)^2); 
   s=s-2; 
   w=w+1; 
end %while 
 
if s==1 
   total=total+w; 
end %if 
 
k=1/(total*groups); 
 
weights=zeros(1,viewsize^2*groups); 
 
weightmatrix=ones(viewsize)*k; 
levels=floor((viewsize+1)/2); 
for level=2:levels 
   index=level:viewsize-level+1; 
   weightmatrix(index,index)=weightmatrix(index,index)+k*ones(viewsize-(level-1)*2); 
end %for 
 
for group=0:groups-1 
   for row=1:viewsize 
      goffset=group*viewsize^2; 
      weights(1+(row-1)*viewsize+goffset:row*viewsize+goffset)=weightmatrix(row,:); 
   end %row       
end %group 
    
fixweights=[weights 0]; 
 
 
 
A4.2.9 Getgroup.m 
 
function onegroup=getgroup(group,matrix) 
%Gets the desired group from the matrix storing all groups. 
 
sidesize=size(matrix,2); 
uplimit=(group-1)*sidesize+1; 
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downlimit=group*sidesize; 
onegroup=matrix(uplimit:downlimit,:); 
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A4.2.10 Getoutput.m 
 
function output=getoutput(bild,version, svarsmatris) 
rad=bild*3; 
 
output=svarsmatris(rad+version,:); 
 
 
 
A4.2.11 GetS1set.m 
 
%Procedure to form trainingset for S1. 
 
trainingset=zeros(groupsins1,s1viewsize^2);    
       %One picture for each group. 
 
%define temporary vectors. 
middledot=[0 0 1 1 0 0]; 
lmiddledot=[0 0 1 0 0 0]; 
rmiddledot=[0 0 0 1 0 0]; 
horiline=[1 1 1 1 1 1]; 
nada=[0 0 0 0 0 0]; 
left=[1 0 0 0 0 0]; 
almostleft=[0 1 0 0 0 0]; 
middleleft=[0 0 1 0 0 0]; 
middleright=[0 0 0 1 0 0]; 
almostright=[0 0 0 0 1 0]; 
right=[0 0 0 0 0 1]; 
twoandthree=[0 1 1 0 0 0]; 
fourandfive=[0 0 0 1 1 0]; 
oneandtwo=[1 1 0 0 0 0]; 
lefthalf=[1 1 1 0 0 0]; 
righthalf=[0 0 0 1 1 1]; 
twothreefour=[0 1 1 1 0 0]; 
threefourfive=[0 0 1 1 1 0]; 
fiveandsix=[0 0 0 0 1 1]; 
 
 
%Now we define the training patterns in the following order: 
%thick vertical line  
%thin vertical line  
%thick horizontal line 
%thin horizontal line 
%thick ul corner to lr corner  
%thin ul corner to lr corner  
%thick ll corner to ur corner  
%thin ll corner to ur corner  
 
f=1.7;      %This factor is needed to make the thick and 
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      %the thin feature detectors respond with 
      %approximately the same strength. 
 
trainingset=[[middledot middledot middledot middledot middledot middledot]/f 
         lmiddledot lmiddledot lmiddledot lmiddledot lmiddledot lmiddledot 
         [nada nada horiline horiline nada nada]/f 
         nada nada horiline nada nada nada 
        [oneandtwo lefthalf twothreefour threefourfive righthalf fiveandsix]/f 
         left almostleft middleleft middleright almostright right 
         [fiveandsix righthalf threefourfive twothreefour lefthalf oneandtwo]/f 
         right almostright middleright middleleft almostleft left]; 
        
clear middledot horiline nada left almostleft twoandthree 
clear middleleft middleright almostright right fourandfive 
clear fiveandsix lefthalf lmiddledot oneandtwo righthalf 
clear rmiddledot threefourfive twothreefour 
 
      
 
A4.2.12 Getsmallmatrix.m 
 
function smallmatrix=getsmallmatrix(rowofweights,time) 
%Picks out the relevant weights for the current 3x3 matrix. 
 
smallmatrix=zeros(3); 
start=(time-1)*3+floor((time-1)/2)*12+1; 
smallmatrix(1,:)=rowofweights(start:start+2); 
smallmatrix(2,:)=rowofweights(start+6:start+8); 
smallmatrix(3,:)=rowofweights(start+12:start+14); 
 
 
 
A4.2.13 Getweights.m 
 
function weights=getweights(ingroup,outgroup,allweights,viewsize) 
%Returns a viewsize*viewsize matrix with the weights  
%between ingroup and outgroup. 
 
weights=zeros(viewsize); 
start=(ingroup-1)*viewsize^2; 
for rownumber=1:viewsize 
   left=start+(rownumber-1)*viewsize+1; 
   right=start+rownumber*viewsize; 
   row=allweights(outgroup,left:right); 
   weights(rownumber,:)=row; 
end %rownumber 
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A4.2.14 Opts1.m 
 
%Procedure opts1. 
 
%s1 should be a column of groups with the number of groups being 
%groupsins1. 
 
optstart=flops; 
 
groupcolumn=zeros((groupsins1+1)*s1side,s1side); 
%In this matrix all groups are temporarely stored below each other. 
SLM11=pixelizeinput(input,3);  
%multiplies each input-pixel with the appropriate number of SLM-pixels. 
 
for group =1:groupsins1+1 
   onegroup=zeros(s1side); 
    
   for time=1:4 
      %The computation of each s1group must be performed in 4 parts. 
      %time is a number between 1 and 4 which tells us which 3x3 pixel- 
      %region is currently on display. 
      %1 2 
      %3 4 
       
      macrorow=floor((time-1)/2)+1; 
      macrocol=rem((time-1),2)+1; 
       
      smallmatrix=getsmallmatrix(weightstos1(group,:),time); 
      weightmatrix=fillmatrix(smallmatrix,3*inpside); 
      %Each inputpixel is projected onto 3x3 weightpixels at a time. 
      discreteweights; 
   %The binary nature of the weight-SLM leads to a quantization of values. 
      CCD=SLM11.*weightmatrix; 
      %In order for this simulative multiplication to work, SLM11 
      %must have the same dimensions as weightmatrix. That is, each 
      %inputpixel must be composed of 3x3 pixels in the same state. 
       
      for sr=1:s1side 
         for sc=1:s1side 
            %The CCD is being gone through one pixel at a time. 
            rowstart=(macrorow-1)*3+sr; 
         colstart=(macrocol-1)*3+sc; 
         %Since we are not dealing with complete 6x6-pixels, we have to make 
         %jumps in the storage matrix after every 3x3-pixel. 
         onegroup(sr,sc)=onegroup(sr,sc)+sumview(CCD,rowstart,colstart,3); 
   end %sc 
      end %sr 
       
   end %time 
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   groupcolumn=putgroup(onegroup,group,groupcolumn); 
    
end %group 
 
%Now the optical multiplications for all groups are finished and 
%the results are stored in groupcolumn. 
 
%Now let's do the non-optical part of the S1-evaluation. 
inhibgroup=getgroup(groupsins1+1,groupcolumn); 
for group=1:groupsins1 
   b=weightstos1(group,s1viewsize^2+1); 
   denominator=1+r1/(1+r1)*b*sqrt(inhibgroup); 
   result=zeros(s1side); 
   currentgroup=getgroup(group,groupcolumn); 
   result=r1*max(0,(1+currentgroup)./denominator-1); 
   s1=putgroup(result,group,s1); 
end %group 
 
totopt=totopt+flops-optstart; 
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A4.2.15 Opts2.m 
 
%Procedure opts2. 
 
%s2 and c1 should both be a column of groups with the number of groups being 
%groupsins2 and groupsinc1 respectively. 
 
optstart=flops; 
 
clear weightmatrix     %In case this has been used earlier, 
         %it is cleared. 
sumgroupcol=zeros(s2side*(groupsins2+1),s2side); 
%This is to store the CCD-result which will be used in the final algorithm. 
 
for ingroup =1:groupsinc1 
%loop over inputgroups, that is, groups in c1. 
    
   c1group=getgroup(ingroup,c1); 
   SLM21=pixelizeinput(c1group,s2viewsize); 
   %Each input-pixel must be duplicated as many times as there are synapses 
   %connected to it. 
    
   for outgroup=1:groupsins2+1 
   %loop over outputgroups, that is, groups in s2 + the inhibitory group. 
    
      weights=getweights(ingroup,outgroup,weightstos2,s2viewsize); 
      weightmatrix=fillmatrix(weights,s2viewsize*c1side); 
   %Each inputpixel is projected onto 6x6 weightpixels at a time. 
   discreteweights; 
   %The binary nature of the weight-SLM leads to a quantization of values. 
   CCD=SLM21.*weightmatrix; 
   %In order for this simulative multiplication to work, input 
   %must have the same dimensions as weightmatrix. That is, each 
   %inputpixel must be composed of 6x6 pixels in the same state. 
   sumgroup=zeros(s2side); 
    
   for sr=1:s2side 
      for sc=1:s2side 
      %We now update all pixels of the current s2-group one by one. 
      sumgroup(sr,sc)=sumview(CCD,sr,sc,s2viewsize); 
         end %sc 
   end %sr 
    
   old=getgroup(outgroup,sumgroupcol); 
   sumgroupcol=putgroup(old+sumgroup,outgroup,sumgroupcol); 
   end %outgroup 
    
end %ingroup 
 
%Now the multiplications for all groups are finished and the results 
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%are stored in sumgroupcol. 
 
%Now let's do the non-optical part of the S2-evaluation. 
inhibgroup=getgroup(groupsins2+1,sumgroupcol); 
for group=1:groupsins2 
   b=weightstos2(group,groupsinc1*s2viewsize^2+1); 
   denominator=1+r2/(1+r2)*b*sqrt(inhibgroup); 
   result=zeros(s2side); 
   currentgroup=getgroup(group,sumgroupcol); 
   result=r2*max(0,(1+currentgroup)./denominator-1); 
   s2=putgroup(result,group,s2); 
end %group 
 
totopt=totopt+flops-optstart; 
 
 
 
A4.2.16 Outpreproc.m 
 
%Repeated optical evaluations are done once and for all, and the results are 
%saved into files. 
 
%This version saves C2 for the following pictures: 
 %co, min, ch, timk, mon 
 
genericname2='.raw.tab'; 
 
picnum=0; 
 
genericname1='bilder/co'; 
index=num2str(picnum); 
input=readpicture([genericname1 index genericname2],inpside); 
    
opts1; 
evaluatec1; 
opts2; 
evaluatec2; 
    
cd opticresults 
save co0c2 c2 
cd .. 
 
etc,etc.... 
 
 
A4.2.17 Pixelizeinput.m 
 
function SLM=pixelizeinput(input,pixelsize) 
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inpsize=length(input); 
colindex=0; 
rowindex=0; 
 
left=zeros(pixelsize*inpsize,inpsize); 
for index=1:pixelsize:pixelsize*inpsize 
   colindex=colindex+1; 
   left(index:index+pixelsize-1,colindex)=ones(pixelsize,1); 
end %index 
 
right=zeros(inpsize,inpsize*pixelsize); 
for index=1:pixelsize:pixelsize*inpsize 
   rowindex=rowindex+1; 
   right(rowindex,index:index+pixelsize-1)=ones(1,pixelsize); 
end %index 
 
SLM=left*input*right; 
 
 
 
A4.2.18 Pretrains2.m 
 
%This routine gives the weights to the S2-layer small startout-values chosen  
%so different groups get different styles.  
   
trainingset=zeros(groupsins2,s2viewsize^2*groupsinc1);   
        %One picture for each S2-group. 
        %Each S2-group takes input from 
all C1-groups. 
 
%Temporary vectors. 
horiline=[1 1 1 1]; 
nada=[0 0 0 0]; 
left=[1 0 0 0]; 
almostleft=[0 1 0 0]; 
almostright=[0 0 1 0]; 
right=[0 0 0 1]; 
 
 
%Now the features we trained C1 for: 
vertline=[almostleft almostleft almostleft almostleft]; 
c1horiline=[nada horiline nada nada]; 
ultolr=[left almostleft almostright right]; 
lltour=[right almostright almostleft left]; 
empty=[nada nada nada nada]; 
 
%And now the trainingset for s2. 
 
group1=[vertline empty empty empty]; 
group2=[empty c1horiline empty empty]; 
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group3=[empty empty ultolr empty]; 
group4=[empty empty empty lltour]; 
group5=[vertline c1horiline empty empty]; 
group6=[vertline empty empty lltour]; 
group7=[vertline empty ultolr empty]; 
group8=[empty c1horiline empty lltour]; 
group9=[empty c1horiline ultolr empty]; 
group10=[empty empty ultolr lltour]; 
group11=[vertline c1horiline ultolr empty]; 
group12=[vertline c1horiline empty lltour]; 
group13=[vertline empty ultolr lltour]; 
group14=[empty c1horiline ultolr lltour]; 
group15=[vertline c1horiline ultolr lltour]; 
 
trainingset= [group1 
     group2 
     group3 
     group4 
     group5 
     group6 
     group7 
     group8 
     group9 
     group10 
     group11 
     group12 
     group13 
     group14 
     group15]; 
   
clear  horiline nada left almostleft leftright 
clear mittleft mittright almostright right   
      
%Now we can train weightstos2. 
q=100;      %Training speed. 
c=weightstos2(groupsins2+1,1:groupsinc1*s2viewsize^2); 
for feature=1:size(trainingset,1) 
   u=trainingset(feature,:); 
   deltaa=q*c.*u; 
   weightstos2(feature,:)=[deltaa 0]; 
end %feature 
 
nonormfactor=1.6;    %It turns out that normalization leaves 
      %with weights that are slightly too small. 
      %We therefore compensate with this factor. 
for row=1:groupsins2 
   oldsum=sum(weightstos2(row,:)); 
   weightstos2(row,:)=weightstos2(row,:)/oldsum*nonormfactor; 
end %row 
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clear trainingset 
 
 
 
A4.2.19 Putgroup.m 
 
function matrix=putgroup(onegroup,groupnumber,matrix) 
%Stores the desired group in the matrix storing all groups. 
 
sidesize=size(onegroup,1); 
uplimit=(groupnumber-1)*sidesize+1; 
downlimit=groupnumber*sidesize; 
matrix(uplimit:downlimit,:)=onegroup; 
 
 
 
A4.2.20 Readpicture.m 
 
function f=readpicture(fnamn,N) 
 
%This function reads a picturefile and transforms the contents into a matlab- 
%friendly format. The result is stored in the matrix f. It is used with this 
%syntax: "m=readpicture('path/filename',sidesize);" 
 
fid=fopen(fnamn,'r'); 
v=fscanf(fid,'%d'); 
v=~round(v/255); 
f=reshape(v,N,N)'; 
fclose(fid); 
 
 
 
A4.2.21 Shuffle.m 
 
function outvector=shuffle(outsize) 
a=0:outsize-1; 
while length(a)>0 
   x=floor(rand*length(a)+1); 
   outvector=[outvector a(x)]; 
   a=[a(1:x-1) a(x+1:length(a))]; 
end 
 
 
 
A4.2.22 Sumview.m 
 
function total=sumview(CCD,rowstart,colstart,pixelsize) 
 
CCDrowstart=(rowstart-1)*pixelsize+1; 
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CCDcolstart=(colstart-1)*pixelsize+1; 
total=0; 
 
step=pixelsize+1; 
stop=step*(pixelsize-1); 
for rowoffset=0:step:stop 
   for coloffset=0:step:stop 
      total=total+CCD(CCDrowstart+rowoffset,CCDcolstart+coloffset); 
   end %coloffset 
end %rowoffset 
 

 
 

A4.2.23 Update15groups.m 
 

%TO UPDATE ALL GROUPS AFTER ONE IMAGE, THIS IS USED. 
u=zeros(1,s2viewsize^2*groupsinc1); 
for group=1:groupsins2 
   %Go through all groups and check if they won a contest. Then they should be updated. 
   if allwinners(group,1)>0 
      x=allwinners(group,3); 
      y=allwinners(group,2); 
     
      %The input to the winning neuron has to be transformed  
   %into a row vector. 
      for c1group=1:groupsinc1 
         onegroup=getgroup(c1group,c1); 
   uplimit=y; 
         downlimit=y+s2viewsize-1; 
         leftlimit=x; 
         rightlimit=x+s2viewsize-1; 
         temp=onegroup(uplimit:downlimit,leftlimit:rightlimit); 
         tempvector=reshape(temp',1,s2viewsize^2); 
   clear temp 
         u((c1group-1)*s2viewsize^2+1:c1group*s2viewsize^2)=tempvector; 
   clear tempvector 
      end %c1group 
                
      c=weightstos2(groupsins2+1,1:groupsinc1*s2viewsize^2);  
      norminput=u/sum(u); 
      aweights=weightstos2(group,1:s2viewsize^2*groupsinc1);               
      deltaa=q2*(norminput-aweights); 
      aweights=aweights+deltaa; 
      aweights=aweights/sum(aweights);                
      v=sqrt(c*norminput'); 
      deltab=q2/2*(v-weightstos2(group,s2viewsize^2*groupsinc1+1)); 
   rightpart=weightstos2(group,s2viewsize^2*groupsinc1+1)+deltab; 
      weightstos2(group,:)=[aweights rightpart]; 
   clear aweights deltaa rightpart 
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      conscience(group)=conscience(group)+deltaconscience; 
      %Increase the conscience of the winner and decrease the others'. 
 
   else 
      %The group won't be updated => lower its conscience. 
      conscience(group)=max(0,conscience(group)-deltaconscience); 
   end %if 
end %group 
clear allwinners %This is no longer needed. 
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