
Optical Implementation of a
Neural Network for Pattern

Recognition

Diploma work for the degree of Master of Science

Jan Lagerwall
April 1997

Abstract

HIS REPORT DESCRIBES the construction of a dynamic optical hybrid system for imple-
menting multi-layer neural networks. The communication between neurons is
performed by amplitude modulating optical signals with dynamic transmission filters

realized with a ferroelectric liquid crystal spatial light modulator (FLC-SLM). A large part of
the information processing is thus performed in parallel. The amplitude modulated signals are
detected by a CCD-camera and some further processing is done in a conventional computer.

The system should recognize two-dimensional graphic patterns and it has been tested on
the ten Arabic digits in different shapes. As neural net algorithm a modified version of the
Neocognitron model of Kunihiko Fukushima has been used. The system has been simulated
in MATLAB and its ability to generalize and its sensitivity to disturbances have been
examined. Furthermore the possibility of using a binary FLC-SLM to perform multi-level
amplitude modulation has been verified.

After training on a small number of different series of the ten digits, the simulated network
has capability to generalize to shapes that are not part of the training set. Unfortunately the
synaptic dimensions of the network are so large that the optical implementation could not be
performed with the equipment presently at our disposal. With further refined optical compo-
nents this hybrid system will probably be highly competitive with systems using entirely
digital computation.

T

Preface

HIS TEXT GIVES an account of my
diploma work which I performed at
the department of microwave tech-

nology in the research group for diffractive
optics directed by assoc. prof. Sverker
Hård, during the period October 1996 to
April 1997. In chapter 2 I give a short in-
troduction to the concept of neural
networks while the subsequent chapters
are devoted to the specific system I
developed in the project.

For stimulating discussions during the
course of the work I would like to

sincerely thank my supervisors Sverker
Hård and my assistant supervisor techn.
lic. Björn Löfving at the institution
mentioned above, as well as. Dr. Peder
Rodhe at FLC Optics AB. I would also
like to give my thanks to assoc. prof. Mats
Nordahl at the institution of theoretical
physics for tips and ideas he has
contributed. Furthermore, he was the one
who, in the Neural Networks course here
at Chalmers, first introduced me to the
subject in a most inspiring way.

T

Contents

1. INTRODUCTION.. 1

2. BACKGROUND... 2

2.1 WHAT IS A NEURAL NETWORK ?.. 2
2.2 MULTIPLE LAYERS .. 3
2.3 HARDWARE ... 4

3. THE GOAL OF OUR PROJECT... 5

4. THE NEURAL NETWORK IN OUR SYSTEM .. 7

4.1 THE NEOCOGNITRON MODEL .. 7
4.2 INHIBITORY NEURONS ... 9
4.3 THE OUTPUT LAYER .. 11
4.4 SUMMARY OF CENTRAL CONCEPTS ... 11
4.5 TRAINING OF THE FIRST S-LAYER.. 13
4.6 THE TRAINING OF THE SECOND S-LAYER... 15
4.7 THE TRAINING OF THE OUTPUT LAYER .. 17

5. THE OPTICAL IMPLEMENTATION ... 19

5.1 OPTICAL REPRESENTATION OF CONTINUOUS-VALUED WEIGHTS ... 19
5.2 THE OPTICAL SETUP .. 19
5.3 TIME MULTIPLEXING ... 21

6. RESULTS.. 23

6.1 THE PROJECTION SYSTEM.. 23
6.2 SIMULATION OF GRAYSCALE... 24
6.3 THE NEURAL NETWORK ALGORITHM... 26

6.3.1. Generalization ... 27
6.3.2. Displacements of the input image ... 30
6.3.3. Scaling ... 31
6.3.4. Noise .. 31
6.3.5. False inputs ... 33

6.4 OPTICAL IMPLEMENTATION VERSUS NUMERICAL.. 33

7. DISCUSSION FOR FURTHER WORK ... 35

7.1 IMPROVEMENTS ON THE ALGORITHM .. 35
7.2 BETTER SPATIAL LIGHT MODULATORS .. 35
7.3 A NEW ILLUMINATION TECHNIQUE.. 36
7.4 OPTICAL IMPLEMENTATION OF THE OUTPUT LAYER.. 37

APPENDIX 1 .. 39

TIME MULTIPLEXING .. 39

APPENDIX 2 .. 41

THE TRAINING OF THE S2-LAYER .. 41

A2.1 THE GROUPS COMPETE AGAINST EACH OTHER ... 41
A2.2 LATERAL INHIBITION AND BAD CONSCIENCE.. 42
A2.3 UPDATING OF THE WEIGHTS ... 42

APPENDIX 3 .. 44

THE RESPONSE ALGORITHM OF THE S-NEURONS... 44

APPENDIX 4 .. 46

MATLAB FILES.. 46

A4.1 THE THREE MAIN TRAINING FILES .. 46
A4.1.1 Start.m .. 46
A4.1.2 Selforg.m .. 48
A4.1.3 Trainoutput.m... 49

A4.2 HELP FILES IN ALPHABETICAL ORDER .. 51
A4.2.1 Contest.m ... 51
A4.2.2 Contoutput.m.. 52
A4.2.3 Discreteweights.m .. 52
A4.2.4 Evaluatec1.m.. 53
A4.2.5 Evaluatec2.m.. 54
A4.2.6 Evaluatec2c.m .. 54
A4.2.7 Fillmatrix.m ... 54
A4.2.8 Getfixweights.m.. 56
A4.2.9 Getgroup.m .. 56
A4.2.10 Getoutput.m.. 58
A4.2.11 GetS1set.m ... 58
A4.2.12 Getsmallmatrix.m... 59
A4.2.13 Getweights.m.. 59
A4.2.14 Opts1.m .. 60
A4.2.15 Opts2.m .. 62
A4.2.16 Outpreproc.m ... 63
A4.2.17 Pixelizeinput.m... 63
A4.2.18 Pretrains2.m... 64
A4.2.19 Putgroup.m... 66
A4.2.20 Readpicture.m .. 66
A4.2.21 Shuffle.m... 66
A4.2.22 Sumview.m ... 66
A4.2.23 Update15groups.m... 67

REFERENCES... 69

1. Introduction

1

1. Introduction

HE BIOLOGICAL brain is today un-
surpassed in its ability to identify
and distinguish different kinds of

patterns. It is an old dream to construct
machines capable of the same thing, but
this has proved very difficult.

A common algorithm used in this work,
is the so called neural network, a structure
which takes the biological brain as a
model. Normally such algorithms are
implemented in a computer, but since
neural networks are strongly parallel
structures, while today’s computers are

serial, such solutions suffer from very long
computation times.

In this work we present a neural
network based system for identification of
two-dimensional graphical patterns, in
which a large part of the computations are
executed simultaneously using an optical
setup. The whole system has been
simulated in Matlab and some essential
features of the optical part have been
realized and evaluated in a laboratory
setup.

T

2. Background

 2

2. Background

2.1 What is a neural network ?
Practically all computers we meet today
are built according to the same basic
pattern. The central component is the
processor which can perform a number of
complicated tasks. It is, however, the sole
component capable of these tasks, and
hence the computations are executed
serially, i.e. one operation is performed at
a time.

The serial computer is in many
situations an excellent tool, but some
problems are parallel as to their nature and
they become quite difficult for it to solve.
An example is pattern recognition of
various kinds. If we make small
modifications of the input to a normal
computational algorithm its response
should change thereafter. If the task
instead is to identify a letter or a digit, the
response should be stable even if we for
instance change the font. A machine set to
solve such problems must be capable to
generalize and extract the essential out of a
huge information flow. In order to manage
this it needs a so called associative
memory [1].

The addressing of associative memories
differs radically from that of traditional
computer memories. A computer has no
problems remembering the code to your
credit card. It stores the information at a
specific address in the memory and when
the computer needs the code it reads the
exact data from this address. You, on the
other hand, do not have this possibility
since the brain is an associative memory.
In order to bring the code forward you
might have to relate it to a word, or maybe
it doesn’t pop up until you stand with your

fingers on the keyboard. While the proces-
sor of a computer must give the exact ad-
dress to the place where the sought infor-
mation is stored, information from an
associative memory is brought up when a
fragment of a stored memory reaches it.

It is apparent that the optimal uses for
the different types of memory are not the
same. Complicated computations which a
serial computer evaluates in no time can be
very time consuming for a human being,
but to understand what a person is saying,
or to realize that both oak and birch are
trees, are tasks which most people perform
without reflecting.

In order to create machines capable of
such tasks scientists have taken inspiration
from the design of the biological brain.
Instead of a single powerful processor our
brain has an enormous number of very
simple processors, neurons, which work in
parallel and are connected in a very
complex fashion. Neurons are binary units;
either they give a signal with a fix strength
or they stay quiet.

Each neuron has connections, synapses,
to a large amount of its neighbors.
Through the synapses the neuron receives
signals from its neighboring neurons.
Since synapses differ in strength, some
neighbors will affect the neuron more than
others. The weighted signals are added and
if the total input exceeds a certain
threshold value, the receiving neuron will
emit a signal. The strengths of the
synapses may be altered during one’s
lifetime and this is probably what happens
when we learn something. Our memory
thus consists of a certain set of synaptic
strengths.

2. Bakgrund

3

In a neural network one tries to mimic
the structure of the brain. A number of
models, differing in complexity and per-
formance, have been developed [1,2,3].
The choice of model depends on the prob-
lem to be solved. Common to all models is
that the associative memory consists of the
set of weighted connections between neu-
rons. The function of neurons, the type of
connections, and the method of training
the network, are things which often vary
from one model to another. Often one
combines several different models in one
neural network.

The family of neural networks used in
this work is the so called feed forward net-
work, also called perceptrons (see figure
1). These networks have one input- and
one outputside and the direction from the
former to the latter defines the direction of
information flow during evaluation.

Figure 1. A simple one-dimensional per-
ceptron with one layer of neurons.

In its simplest form a perceptron has
only one process stage. It is then said to
have one layer of neurons. The network in
figure 1 is an example of a singlelayer per-
ceptron. We see, however, that in reality
we have two sets of neurons (represented
by circles in the figure), but in the first no
evaluation of data is performed. These
neurons are needed as input receptors.
Hence, in a comparison with the human
nervous system, the neurons in the first

column correspond to the rods and cones
of the eye. By layers in neural networks
we thus mean the combination of a set of
neurons and the weights between them and
their inputs.

2.2 Multiple layers
A deeper analysis of the function of the
perceptron reveals that there exists a
family of problems, the linearly
unseparable problems, that are
theoretically impossible to solve with only
one layer of neurons [1,2]. The classic
example of such problems is the logical
XOR function.

By connecting two or more layers in se-
ries we break this barrier. In a multilayer
network the treatment of input is
performed in several steps. While the
neurons of a onelayer perceptron must
achieve a complete answer directly from
the external input, each neuron in a
multilayer network performs only a partial
operation. By dividing the task into several
simpler partial problems it is solvable for
the network even if it is linearly
unseparable.

For the task set up in our project
(detection of two-dimensional graphical
patterns) a multilayer structure is
preferable. Each layer extracts different
features in the input to the layer, and we
thus get a stepwise abstraction of the
problem. In the first layer the input is
analyzed concerning very simple features
such as straight lines with different
inclinations. The signals from this layer
then constitute the input to the next, which
extracts more complicated features. When
the information reaches the output layer it
has gone through an extensive pre-
processing which renders the response of
the system much more reliable.

Input Output

Data flow

i=1

i=2

i=3

i=4

i=5

Weightswij

j=1

j=2

j=3

2. Background

 4

Figure 2. An example of human feature
detection. The sounds uttered by the man
and woman may be very personal, so in
order to understand what they in fact mean
the listener must do an analysis with
respect to phonetic features, phonemes. By
dividing the speech in phonetic
constituents, the priest happily realizes
that the sounds reaching his ears both
express the message ”yes”.

2.3 Hardware
Neural networks are often implemented as
a program run in a serial computer. This
works reasonably well for simpler prob-
lems if the computer is fast. It is, however,
an unsatisfactory solution and presently
much work is done on developing
hardware which works in a parallel
manner [1,2,3,5,6,8]. One tempting
thought is to implement parts of the
system, or even the whole system,
optically. For instance one can use an
optical correlator to compare the input to
stored images [6].

We have in this work chosen an optical
implementation as described in figure 3.
An input neuron is represented by a light
source of which the intensity is
proportional to the strength with which the
neuron signals. The synapses from the
neuron are represented by filters with
transmittance values reflecting the
synaptic weights.

Figure 3. A neural network may be
realized by amplitude modulation of light.

With detectors we measure the light in-

tensities after passage through the filters.
These values reflect the product between
the inputs and the synaptic weights. The
point is that a large amount of
multiplications may be performed at the
same time (and at the speed of light) by
using matrices of light sources, weight
filters and detectors. I will return with an
extensive description of the optical system
in chapter 5.

yes: yes:

“yes”

Input Output

light source
(=input neuron)

transmission
filters
(=weights)

detectors
(=output neurons)

to
computer

Weights

3. The goal of our project

5

3. The goal of our
project

HIS WORK IS in a sense a freestand-
ing sequel to the diploma work of
Richard Englund entitled Optical

Neural Networks for Associative Image
Processing [5]. We have both aimed at
constructing neural networks capable of
recognizing and distinguishing a number
of graphical patterns. The optical
implementations in our projects are both
based on amplitude modulation of
incoherent light.

Englund chose to implement a network
based on the Ho-Kashyap algorithm, a
relatively simple solution with only one
layer. Due to the limitations of single-layer
neural networks I wanted to go one step
further and implement a network with sev-
eral layers. Since the elements of the Ho-
Kashyap algorithm are vectors, the two-
dimensional picture to be treated with this
algorithm has to be converted into a one-
dimensional vector. In doing this we lose
the valuable information that lies in the
correlation between neighboring picture
elements. For my work I searched for an
algorithm that preserves such information.

After having searched the literature for
suitable alternatives I settled for a model
called the Neocognitron. This model has a
structure that is well suited for the task,
and furthermore, the very attractive
property for optical implementation, that
weights as well as in- and outputs are
non-negative. As the model is rather
complex I have found it necessary,
however, to make some simplifications of
it. Partly in order to fit the work within its

time limits, and partly in order to adapt the
algorithm to the conditions set by the
optical implementation.

Englund used a fix photographic mask
to perform the weightings in his network.
The weights were calculated entirely in a
computer. This has two major drawbacks.
The first is that no regard is taken to the
inevitable distortion of the optical system.
The other is related to the dynamics of the
system. If one wants to add a pattern to the
set of patterns recognized by the system,
the weights must be recalculated and the
fix mask must therefore be replaced by a
new one.

The other area where we wanted to take
our system one step further than
Englund’s, concerned the weight mask.
Instead of a fix photographic mask we
have chosen to use a Spatial Light
Modulator, or SLM, with a ferroelectric
liquid crystal (FLC) layer as active
medium. The modulator is divided into a
large number of picture elements (pixels)
which can be switched between a
transparent and an absorbing state. FLC-
modulators are binary elements, that is
they have no gray scale.

The pixel pattern can easily and quickly
be changed which gives us the possibility
of training the weights of the network with
the optical equipment that will be used
when the system is in operation. The aber-
rations introduced by the optical
implementation are part of the training set
and the neural network can therefore learn
to compensate for them.

T

4. The Neural Network of our System

 6

Furthermore, implementing the weight
mask with an SLM gives the system com-
pletely different dynamics with respect to
change of synaptic weights and thereby the
set of stored patterns. The dynamics of the
SLM also opens up a way to optically im-
plement a multi-layer network, see chapter
5.

Our aim has not been to construct a
very fast or efficient system. From the start
we have been limited by the performance
of the hardware at our disposal. Our goal
has rather been to give a proposal to a
technique which could, with better
hardware and much further development,
prove to be highly competitive with
present solutions.

3. The goal of our project

7

4. The neural network in
our system

S INPUT PATTERNS we have chosen
the ten Arabic digits 0 to 9 in
different guises, drawn with 27*27

quadratic binary pixels. This picture is first
fed through a set of neuron layers which
has been trained to extract different
features of the picture. Thereafter the by
now highly preprocessed information
reaches the output layer consisting of 10
neurons with continuous output signals.
Each neuron in this layer corresponds to
one digit. Since the neurons in this layer
give continuous-valued response we can,
in addition to see which digit the system
has identified the picture with, also get a
measure of the reliability of the answer.
This is done by comparing the response of
the strongest output signal to that of the
second strongest.

4.1 The Neocognitron model
Since the task of our system is to detect
two-dimensional patterns I have chosen to
implement a multi-layer system. I have
started from the so called Neocognitron
model [2,4,9] of Kunihiko Fukushima, but
I have made a number of simplifications.

The model features two different types
of neuron; S- (Simple) and C- (Complex)
neurons. They both have non-negative out-
puts but their operation and tasks are radi-
cally different. Each layer in the
Neocognitron contains only one type, but

an S-layer is always followed by a C-layer,
and together they make up what I call a
complex. The feature detection is
performed in the S-layer, while in the C-
layer a simple processing of the S-layer
output takes place. The purpose of the
latter is to make the system less sensitive
to lateral or vertical shifts of the input
pattern. Our system features two
complexes followed by the output layer
which is of a different nature.

Figure 4. An S- and a C-layer comprise a
complex in the Neocognitron structure.
When data flows from the S- to the C-layer
a reduction of dimensions takes place.
Therefore the C-layer has fewer neurons
than the S-layer.

A

4. The Neural Network of our System

 8

Figure 5. A very simple one-dimensional Neocognitron network. Here we have only two
groups of two neurons in the S-layer and accordingly two groups of one neuron in the C-
layer. The receptive field of each S-neuron is three neurons large and the two groups have
one input neuron in common. Note that the neurons within a group share the same weight
setup. The neurons of the C-layer perform a logical OR function of the outputs from the S-
neurons they are connected to.

Figure 5 shows a one-dimensional pic-

ture of the Neocognitron structure. The
neurons of the S-layer are divided into a
number of groups. The neurons within a
group have the same weight setup to the
input layer and thereby they become detec-
tors of the same feature. The coupling to
the input is locally confined so that each
neuron ‘sees’ only a small part of the
image. The neurons of the group are
connected to different parts of the input so
that each neuron has a unique receptive
field. Neighboring neurons have, however,
overlapping fields. Together, the neurons
of a group scan the whole input image.

The point with this structure is that all
neurons within the group search for the
same feature (they share the same weight
setup) in different, locally confined, parts
of the input image. In order to profit maxi-
mally from the group structure, we want to
avoid that more than one group specializes
in one feature. In the training process one
therefore sees to it that the weight setup to
each group is unique.

Figure 6 illustrates the function of the
two-dimensional Neocognitron structure
used in our system. In part b of the figure
the direction of the receptive field as a
function of S-layer position is illustrated.

Figure 6a. The S-layer is divided into a
number of groups, where the neurons
within a group share the same weight
setup. Each group scans the whole input
image, but its neurons react only for the
specific feature they have been trained for.

Different groups of
the S-layer.

The features for which the
different groups have been
trained. The neurons within one
group have the same weights,
making them all react for the
same feature.

Input

4. The Neural Network of our System

9

Figure 6b. Illustration of the local connec-
tions between S-neurons and input. Each
S-neuron is connected to only 6*6 input
neurons, but all in all, the neurons within
a group scan the whole input image.

The C-layers are of a much simpler na-
ture. Each group in an S-layer has a corres-
ponding group in the succeeding C-layer1.
Each neuron in the C-group is connected
to 2*2 S-neurons and there is no overlap of
receptive field between C-neurons. If one
of the four S-neurons making up the input
to a C-neuron signals with a strength
above a certain threshold, the C-neuron
will fire. The relation is illustrated in
figure 7.

Hence, the neurons of the C-layer per-
form a logical OR function. We get a
smoothing out of the outputs from several
adjacent S-neurons and thereby the sensi-
tivity to vertical or lateral shifts of the
input image is diminished. A small
displacement is reflected in the S-group
output, but not in the response from the C-
group.

The groups of the C-layer thus become
binarized and dimensionally reduced
images of their respective S-groups, see
figure 7. This is a rough simplification of
the Neocognitron C-layer but the basic
function is the same [2,4,9].

1In my system the first complex has a slightly
different structure. I will return to this modification
in section 4.5.

Figure 7. The relation between the
neurons of an S-group and those of the
corresponding C-group.

4.2 Inhibitory neurons
The fact that most neural networks feature
both positive and negative quantities
present difficulties when doing an optical
implementation. The light intensity reflects
the magnitude, but how do we give light a
plus or minus sign? The Neocognitron
model is in this respect very attractive as
its weights as well as its neuron signals are
non-negative.

To do without negative weights one
adds a layer of so called I-neurons2 to each
S-layer. The name reflects that they are in-
hibitory as opposed to the excitatory S-
neurons. The latter excite their listeners,
that is, a large output Uex from an S-neuron
stimulates the succeeding neurons which
take Uex as input, to fire. Inhibitory
neurons have precisely the opposite effect;
they inhibit their listeners, i.e. a large I-
neuron output Uin suppresses the response
of succeeding neurons. The relationship is
illustrated in figure 8.

2In the original Neocognitron the I-neurons make
up one special group of the S-layer, but I think the
picture of the network becomes clearer if one treats
this group as lying outside the S-layer.

One S-group with 8*8
neurons with continuous-
valued output.

The corresponding C-group
has 4x4 binary neurons.

4. The Neural Network of our System

 10

Figure 8. The Neocognitron features two
kinds of neurons: excitatory and
inhibitory. The latter suppress the
response of the former.

The I-layer contains only one group.
This resembles the groups of the S-layer as
far as dimensions and local connections to
input, but its neurons are inhibitory and
their weights are not trained. The I-group
is from the beginning given a fix
symmetrical weight setup ci constructed
such that the weights decrease linearly
towards the edges of the receptive field,
and their sum equals one, see figure 9.
Note that I now use just one letter i to
index the input neurons, even though they
are divided into rows and columns of the
two-dimensional receptive field.

Figure 9. Graphical representation of the
weight distribution ci, i.e. the strengths of
the synapses between input and the inhibi-
tory neurons. Each square corresponds to
a synapse and its grayshade reflects the
strength (the lighter it is, the stronger the
synapse). The weight distribution is nor-
malized, i.e. the 36 weights sum up to 1.

The connections between inhibitory and
excitatory neurons are illustrated in figure
10. Each I-neuron is connected to all of its
sister neurons in the S-layer via synapses
with a strength bj, where j indexes the S-
groups. With sister neurons I mean S-neu-
rons with the same geometric location
within its group, and thereby the same in-
put, as the I-neuron in its I-group.

Connections leading from input to S-
neurons are called excitatory synapses and
their strengths are in this text labeled aij.
Connections between an I-neuron and its
sister S-neurons are called inhibitory syn-
apses and have strength bj. As illustrated in
figure 10a this quantity is common for all
neurons within an S-group.

Figure 10a. The structure of figure 5 com-
pleted with the inhibitory group. Note that
all neurons of an S-group have the same
weight to the I-group. In the interest of
readability I have omitted the strengths of
the excitatory synapses (aij).

Figure 10b. The connection between in-
hibitory and excitatory neurons in our
two-dimensional architecture.

Different groups of
the S-layerThe input is connected

both to the excitatory S-
group and the inhibitory I-
group.Input

I-group
Each I-neuron
affects its
geometrically
equivalent neurons
in the S-groups.

4. The Neural Network of our System

11

The inhibitory neurons are needed in
order to prevent the excitatory neurons
from reacting on incorrect features that
contain the feature they have been trained
for. An extreme example is shown in
figure 11. If all the pixels in the receptive
field of an S-neuron are lit (case a) the
signals through its excitatory synapses will
attain their maximum strengths
irrespective of the feature they have been
trained for. Such an image will, however,
also provoke a strong inhibitory response
which suppresses the response from the
excitatory neuron. On the other hand, if the
input corresponds to the specific feature of
the group (case b) the excitatory synapses
will give exactly the same signals as in
case a, but since the inhibitory neuron
reacts weakly, we will in this case get a
strong S-neuron signal.

Figure 11. The cooperation between exci-
tatory and inhibitory neurons.

The two complexes of the system are in
principal equivalent as far as the S- and I-
layers are concerned. They differ only in
the number of groups and size of local re-
ceptive fields.

4.3 The output layer
In the output layer we leave the Neocogni-
tron model. The ten neurons (one for each
output alternative) of this layer are all fully
connected to the C2-layer and each connec-
tion is freestanding from the others.
Weightsharing is thus not incorporated in
this layer, which means we have as many
weights as there are connections, i.e.
10*15*16=2400 (number of output neu-
rons * number of groups in C2 * number of
neurons per C2-group).

The neurons of the output layer are of a
very simple kind. The output from a
neuron is simply the weighted sum of its
input signals, i.e. the scalar product w • c2
where w is a vector containing the weights
to the neuron and c2 is a vector containing
the outputs of the C2-layer. Since no local
connections exist between the output layer
and the C2-layer, the vectorization of the
latter does not affect the outcome. The
correlation between neighboring pixels is
in any case not used.

The weights of the output layer are con-
tinuous and may be of either sign. In order
to implement this layer optically some way
of representing negative numbers with the
optical system is hence needed. One can
for instance displace all values with an
offset value such that the most negative
value is raised to exactly zero. One extra
pixel, representing the offset value, is then
needed in the weight matrix, see for
instance Englund [5]. In our system the
output layer is not implemented optically.

4.4 Summary of central
concepts
Before going on to an account of the train-
ing process, I would like to give the reader
a well needed breathing space, and repeat
the definitions of complex, layer and
group, since these concepts will appear
frequently in the text to follow. Figure 12
gives a comprehensive view of the whole
system architecture. The neurons of the
network are divided into several

Input

Case a

Weights to
I-neuron

Weights to
S-neuron

Signals to I-
neuron

Signals to S-
neuron

+

-

Final
response

Caseb

I-response

Input

Weights to
I-neuron

Weights to
S-neuron

Signals to
I-neuron

Signals to
S-neuron

+

-

Final
response

I-response

4. The Neural Network of our System

 12

consecutive layers. Neurons within a layer
take the signals from neurons of the
preceding layer as input.

In the Neocognitron model we have
three different types of layer. A complex
consists of one layer of each type; one S-,
one I- and one C-layer. These are
intimately connected to each other. Each
layer is divided into a number of groups.
My system features two complexes whose
S-layers consist of nine and sixteen groups
respectively. The two C-layers feature four
and fifteen groups respectively. Each I-
layer consists of only one group and its
function is to inhibit the response of the

excitatory groups in the corresponding S-
layer, such that these won’t respond to
incorrect input.

Neurons within a group share the same
weight setup but are connected to different
parts of the input. Each group has, how-
ever, a weight distribution that differs from
those of the other groups. Through training
we want to specialize each S-group such
that its neurons react on a certain feature in
the input. Ideally none of the other S-
groups should react for the same feature.
Every group should be a unique indicator
of one certain feature.

Figure 12. The network architecture of our system. Information flows from left to right (as an
example of input we have chosen the digit 7) and during the passage a dimensional reduction
is performed. The table below summarizes the dimensions at different stages. In the output
layer there are no groups and only 10 neurons; one for each output alternative.

4. The Neural Network of our System

13

Table 1. Overview of the system dimensions.

Layer In I1 S1 C1 I2 S2 C2 Output
Neuron type binary

exc.
cont.
inh.

cont.
exc.

binary
exc.

cont.
inh.

cont.
exc.

binary
exc.

cont.

Number of
groups

1 1 8 4 1 15 15 1

Group
dimension

27*27 22*22 22*22 11*11 8*8 8*8 4*4 10*1

Number of
neurons in
layer

729 484 3872 484 64 960 240 10

Weight-
sharing*

- yes yes - yes yes - no

Perceptive
field size

- 6*6 6*6 2*2 4*4*4! 4*4*4! 2*2 15*4*4!

Overlap be-
tween per-
ceptive fields
of
neighboring
neurons

- yes yes no yes yes no no

Number of
weights to be
set through
training

- 0 288 0 0 960 0 2400

*Weight sharing means that several neurons have the same weight distribution. Since C-neurons perform a
logical OR-operation on incoming data we can, in their case, not speak of weights in any real sense.
! The neurons are connected to all groups of the preceding layer. The size of the receptive field therefore
becomes n*s*s where n is the number of groups in the preceding layer and s is the lateral size of the receptive
field.

4.5 Training of the first S-layer
The layers to be trained in the system are
the two S-layers and the output system.
Since the input of later layers consists of
the output from preceding layers, we must
start by training the first S-layer
separately. During the training of the
second S-layer the weights of the first are
fixed and its neurons work exactly as they
will when the whole system is in use.
When both S-layers are sufficiently trained
the Neocognitron part of the system is
ready and the training of weights to the
output layer can begin.

The three layers are trained according
to different methods. The S1-layer is not
really trained in the normal sense. Instead

we use a rather special method developed
by Fukushima [4]. All weights are initially
set to zero. Instead of using pictures from
the normal system input (Arabic digits) as
training set, each group is given a binary
picture, with the size of the local receptive
field, of the feature it should recognize.
Only the connections leading from lit
pixels are reinforced. The others maintain
zero strength. In this way the neurons of
the group are made to react strongly only
on this feature.

The weights are calculated in one step
through the formula:

4. The Neural Network of our System

 14

aij = q1 ! ci ! uij
b j = q1 ! ci !uij

i
" (1)

The values uij stand for the 6*6 neuron im-
age that group j is trained with. Each
picture represents one feature (see figure
14). With the constant q1 we may adjust
the magnitude of the resulting weights and
the weight setup ci is the fix weight setup
from figure 9. The process is illustrated in
figure 13. As this part is very simple, it is
most easily realized entirely in the
computer.

Figure 13. The training of the weights to
the first S-layer. Black in the figure corres-
ponds to the value 0, and white to 1. See
also figure 14.

The choice of training pictures is by no
means self-evident. Since it is difficult to
get the neurons to detect curves because of
their narrow field of view, we started by
using eight pictures of straight lines with
different inclinations, see figure 14a. It
turned out, however, that this approach
made the system too sensitive to different
inclinations of the input images. For in-
stance, an italic version of a digit provoked
responses from entirely different groups
than the straight version.

For the next try we used the images of
figure 14b. Half of the groups should still
react for straight lines, while we hoped
that the others would detect angles and
curves. They did in fact have this effect,
but unfortunately they also reacted
strongly on all horizontal and vertical
lines. Hence, they reacted for practically
any input, which of course is highly
unsatisfactory.

In the final version I returned to only
straight lines, but this time with only the
four different inclinations shown in figure

14c. As can be seen in the figure each line
now appears in two versions: one thin and
one thick version. This is because the Neo-
cognitron structure with inhibitory and ex-
citatory neurons (described in chapter 4.2)
exhibits a property which turns out to be a
major drawback when applied in our sys-
tem. The feature detectors become
sensitive also to the thickness of lines.
They thus react very differently on two
images of the same feature but drawn with
pens of different thickness. This drawback
is most serious in the first S-layer since its
neurons are connected directly to the
system input, i.e. the digits to be
recognized, which exhibits large variations
in line thickness.

Figure 14. The patterns used to train the
weights to the first S-layer. Each group in
the layer specializes in one of the patterns.
Three different sets of patterns were tried
out. The best results were obtained with
the set shown in c). Part d) shows the
weight distribution after training with this
set of patterns.

feature uij

* =

ci
Resulting weight
distribution aij

a)

b)

c)

d

4. The Neural Network of our System

15

In order to compensate for this defect I
trained the groups pairwise. Each pair spe-
cialized in one line inclination, but one of
the groups was trained with a thin line
while the other one was trained with a
thick line. When the system is used the
response from the two groups of a pair are
superposed and the combination becomes
the input to one single C-group. This
group thus detects lines with a certain
inclination, almost independently of the
line thickness.

Figure 15a. The response from the eight
groups of the first S-layer when the digit 5
in the font Monaco is given as input.

Figure 15b. The response from the four
groups of the first C-layer when the digit 5
in the font Monaco is given as input.

4.6 The training of the second
S-layer.
The method used to train the S1-layer has
the virtues of being fast and producing
groups that are good detectors of different
features. However, it requires that we

know exactly what these features look like.
For the first S-layer it is not too difficult to
pick suitable features, but when we get to
the second complex, we are on a higher
abstractional level and it is much harder to
imagine what the features should look like.
If we make a bad choice the performance
of the whole system will suffer. I have
therefore made the second S-layer search
for features on its own.

During the training process we present
input images showing the ten digits to the
system. The first complex performs its
feature extraction, and the response from
the neurons of the C1-layer becomes the
input to the second S-layer. Instead of
having some sort of teacher that corrects
the synaptic weights according to how the
neurons reacted and how they should have
reacted to a certain input, we let the groups
compete internally3 each time an image is
presented. The group with the strongest
reacting neuron gets its weights reinforced
in accordance with the image having pro-
voked the response. A complete account of
this process is given in appendix 2.

In order to achieve a good result with
such a training method it is important to
have a suitable weight distribution at the
start. A random start configuration easily
leads to the situation that only one group
(the one reacting most strongly to the first
image) is developed, or that all groups de-
velop in the same way. To avoid this I
started by training the S2-layer in the same
way as the S1-layer, i.e. I gave each group
a feature of its own to recognize. The
weight distributions of each group were
thereafter normalized. The combinations I
used for the startout training are shown in
figure 16.

The features on this level are different
combinations of the four features the C1-
groups were trained four. They can be
combined in 15 different ways, and it is
these combinations that I have chosen as

3Note that all neurons within a group have the same
weight setup. Therefore we say that groups, not
neurons, compete with each other.

sgroup 1

5 10 15 20

5
10
15
20

sgroup 2

5 10 15 20

5
10
15
20

sgroup 3

5 10 15 20

5
10
15
20

sgroup 4

5 10 15 20

5
10
15
20

sgroup 5

5 10 15 20

5
10
15
20

sgroup 6

5 10 15 20

5
10
15
20

sgroup 7

5 10 15 20

5
10
15
20

sgroup 8

5 10 15 20

5
10
15
20

cgroup1

2 4 6 8 10

2

4

6

8

10

cgroup2

2 4 6 8 10

2

4

6

8

10

cgroup3

2 4 6 8 10

2

4

6

8

10

cgroup4

2 4 6 8 10

2

4

6

8

10

4. The Neural Network of our System

 16

starting point in the training. One could
have chosen many other combinations (not
only built on the C1-features), as long as
the different S2-groups differ at the
beginning of the self organizing part of the
training process.

Since the dimensions of the C1-groups
are 11*11 pixels, an S2 local receptive
field of 6*6 pixels is far too big; it
wouldn’t be very local. Therefore I have
made this only 4*4 pixels large.

Figure 16. The fifteen training patterns
(each pattern is a row of four smaller pat-
terns) that were used to give the S2-groups
a start configuration for the self organiza-
tion.

The point with the self organization is,
however, that the layer by itself should
find the most important features on this
level, and therefore the pre-training must
not be too strong. Hence, I decreased all
excitatory synapse strengths, a2, by a
factor of 3, and set the inhibitory ones, b2,
to zero before the self organization started.
This training method is similar to the one
Fukushima developed in his first version
of the Neocognitron [9].

In order to avoid that the weights to one
single group grow stronger and stronger,
and thereby wins every competition
whether its weight distribution fits the
input or not, we give the groups a ‘bad
conscience’. A large bad conscience
reduces the group’s chances of winning a
competition. The winner of a competition
gets its bad conscience increased while the
others get theirs reduced.

+ + +

+ + +

+ + +

+ + +

+

+

+

+

+

+

+ +

+ +

+ +

+

+

+

+

+

+

+ + +

+ + +

+ + +

+ + +

+ + +

1)

2)

3)

4)

5)

6)

7)

8)

9)

10)

11)

12)

13)

14)

15)

4. The Neural Network of our System

17

Figure 17. The configuration of the fifteen
S2-groups after self organization.

In order to get every group to specialize
on one unique feature we apply so called
lateral inhibition between the groups. This
means that the response from one group is
reduced with a certain percentage of the
sum of the responses from all other
groups. If a large number of groups
respond approximately with the same
strength on one type of input, the lateral
inhibition will see to it that the signals
from all these groups are weakened and
none of them wins the current competition.
The final weight distribution to the S2-

layer, after self organization, is presented
in figure 17.

During the training of the second S-
layer we apply the optical system exactly
as it will be applied when the whole
system is in use for pattern recognition.
This leads to the advantage that the system
can learn to compensate for possible
optical aberrations.

4.7 The training of the output
layer
After having completed the training of the
two Neocognitron layers, there remains the
training of the output layer. All of its ten
neurons are fully connected to all the neu-
rons of the C2-layer. The weights are ini-
tially given small random values, and are
then trained with a traditional error correc-
tion method, see for instance [1]. The dif-
ferent input patterns are presented for the
system, and the readytrained Neocognitron
complexes perform their abstraction. The
result reaches the output layer which
calculates a response based on this. The
actual response is compared to the correct
answer and the error is used to modify the
weights.

The neurons of the output layer give
continuous output signals, and do not
have, as is usual in this type of network, a
sigmoidal4 threshold function. The
response of the system is the digit
represented by the loudest output neuron.
A good measure of the reliability is
achieved by comparing its output signal to
those of the other neurons. The correct
answer is of course that only the neuron
representing the digit given as input fires
with maximum strength while the others
are totally quiet.

The function of the system is highly de-
pendent on the training set used for the
output layer. Both the number of training

4A sigmoidal threshold function often used is the
hyperbolic tangent (tanh) function. It is very close
to a step function which switches between -1 and 1
when the input changes sign.

+ + +

+ + +

+ + +

+ + +

+

+

+

+

+

+

+ +

+ +

+ +

+

+

+

+

+

+

+ + +

+ + +

+ + +

+ + +

+ + +

1)

2)

3)

4)

5)

6)

7)

8)

9)

10)

11)

12)

13)

14)

15)

4. The Neural Network of our System

 18

patterns and their types are of large impor-
tance. With a small number of training pat-
terns the system becomes very good at de-
tecting these but generalizes badly. If one

increases the number of training patterns it
takes longer time to train the system, and
the error may never be as low, but the gen-
eralization capacity is much better.

5. The optical implementation

19

5. The optical imple-
mentation

Y COMBINING TWO spatial light
modulators (cf. figure 18) and a
CCD camera with a computer, that

addresses the SLMs in real time as well as
performs the non-optical part of the neural
network algorithm, we have constructed a
generic neural layer. Both input and
weight setup can readily be changed by
updating the settings of the SLMs. In this
way we can implement a virtually
unlimited number of layers.

An advantage of using an extra SLM in
presenting the input, instead of directly
projecting the input image on the weight
matrix, is that the optical neural network
system may be placed free from the detec-
tor. One could for instance send an image
from a camera carried by an airplane, via
radio to the rest of the system, placed in a
stable and protected environment on the
ground. More than one user can then also
share the same pattern recognition system.

5.1 Optical representation of
continuous-valued weights
Since the weights are continuous-valued
while our SLMs are binary, we must simu-
late grayscale in some way. There exist
two apparent alternatives which, however,
both give us a certain quantization of the
value. The first is to do a spatial
multiplexing by representing each weight
by several pixels of the SLM. The weight
zero corresponds to all pixels set to a light

blocking state, while the maximum weight
value is represented by all pixels being
transparent. In between these limits we can
have a number of gray levels, the number
of which depends on how many pixels we
use for this simulation.

The other solution is to use time multi-
plexing by reading off the CCD a number
of times in a row, with updates of the SLM
in between. The different images are then
added to each other. A large weight is rep-
resented by a pixel being transparent
during a large number of exposures, while
pixels corresponding to small weights are
black most of the time.

We have chosen the former alternative
with 4*4 SLM pixels per weight. From
now on, when I speak of gray scale pixels,
I thus mean a kind of macropixel, consist-
ing of 4*4 physical pixels of the SLM.

We did two different measurements to
test the performance of this simulation
method. An account of the results can be
found in chapter 6.

5.2 The optical setup
A sketch of the optical construction is
given in figure 19. The first component
after the light source is a so called beam
expander, i.e. two lenses separated by a
certain distance. This component is needed
to achieve an even illumination of the
whole image area of the input SLM.
Normally a light beam has a Gaussian
profile which means we have to expand it

B

5. The Optical Implementation

 20

to a diameter much larger than the image
size of the SLM in order for the intensity
variation to be of negligible order.

Figure 18. A Spatial Light Modulator
(SLM) consists of a liquid crystal cell sur-
rounded by crossed linear polarizers.

Our SLMs consist of the active FLC-
cell surrounded by crossed polarizers
(polarizer and analyzer), see figure 18. The
light from the first SLM is linearly
polarized in the direction set by the
analyzer of this component. In order not to
lose more light intensity than necessary,
the polarizer of SLM no. 2 must be turned
to this direction. If the retardation of the
FLC cell is perfectly adjusted to the light
wave length, the function of SLM no. 2 is
independent of the direction of the
polarizer (as long as analyzer and polarizer
are crossed), but if this is not the case the
optic axis of the medium must be carefully
directed relative to the polarizer, in order
to achieve maximum contrast [7].

Figure 19. The optical part of the pattern recognition system. The picture generated by SLM
1 is projected onto SLM 2 through the lens L1. The composite picture at SLM 2 is projected
onto the CCD-camera through lens L2.

On the first SLM, with a resolution of
128*128 binary pixels, we set a pattern
corresponding to the input of the current
layer. Since we have limited ourselves in
our system to binary input neurons, each
neuron can be represented by one pixel in
the SLM pattern. If the neuron fires, the
pixel is transparent, otherwise it is dark.

The picture produced by illuminating
the modulator is projected through a lens
on a larger SLM. Its 320*320 pixels are set
to represent the weights between the
current input and the S-neurons. Another
lens projects the combined picture on a
CCD camera which records the intensity
of each pixel. This is proportional to the

product of input and weights. By the virtue
of this process the computer is relieved of
a large part of its computational burden.

In order to simulate our Neocognitron
system of two complexes we start by
showing the input of the whole system (a
picture of a digit) on the first SLM and the
weights to the first S-layer on the second
SLM. The output of the camera is
transmitted to the computer which carries
out the remaining calculations of equation
(2) in appendix 3, and when this is ready it
calculates the C1-layer internally. After
that the output of the C1-layer is set on the
first SLM, since this constitutes the input

L2 (focal length=f2)

Light source

Beam expander
SLM 1

l1 l2

SLM 2

L1 (focal length=f1)

l3 l4

CCD

5. The Optical Implementation

21

to the S2-neurons, and the S2- and C2-
layers are calculated in the same manner.

The pixel size of SLM no. 1 is 220*220
µm2 and in SLM no. 2 the pixels are
80*80 µm2. The camera has 500*500
pixels of 8*12 µm2 area. The difference in
pixel size forces us to enlarge and reduce
the image in between different stages of
the process. Projection of the relatively
large images on each other requires lenses
of rather large diameter. The tolerance
limits for distortion in the system are also
very narrow, so the demands on the optics
of the system are rather high.

For the calculation of the first S-layer
each input pixel should be projected onto
3*3 weight pixels a time, and during the
calculation of the S2-layer the relationship
is 1 onto 6*6 (see appendix 1). In using
2*2 pixels of the first SLM for each input
neuron during the latter calculation, we
can retain the same magnifying ratios and
therefore the same physical setup in both
cases.

Since each weight pixel uses 4*4 pixels
for the grayscale simulation, 3*3 weight
pixels take up 12*12 physical pixels of
SLM no. 2. Lens no. 1 in figure 19 must
thus project a 220*220 µm2 pixel on an
area made up of 12*12 quadratic pixels,
each 80 µm wide, that is on 960*960 µm2.
Hence, the lens should magnify the pattern
of the first SLM 4.36 times in projecting it
on the plane of the other SLM.

When projecting the image of the
second SLM on the plane of the CCD
camera, the rectangular pixel shape of the
latter posed a problem. Either a cylindrical
lens may be used to extend the quadratic
SLM pixels to the same proportions as the
camera pixels, or one can treat several
CCD pixels together and in this way get
quadratic ‘macro pixels’. We chose the
latter solution and treated 2*3 physical
CCD pixels as a macro pixel of 24*24
µm2 area.

Each weight pixel in the second SLM
(that is 4*4 real pixels) should thus be pro-
jected onto a macro pixel in the CCD cam-
era which gives us a size ratio of 320*320

µm2 to 24*24 µm2. Hence, the right lens of
figure 19 must reduce the image 13.3
times in size.

The distances between different compo-
nents follow from the set of equations be-
low. The upper row is the Gaussian lens
formula which says that if a lens of focus f
is placed at a distance so from an object,
the image of the object will appear on the
distance si from the lens. The lower row
gives the relation between the degree of
magnification MT and the distances so and
si.

1
so

+
1
si

=
1
f

si = MT ! so

"

$

 (4)

Lens no. 1 has a focus of 300 mm and lens
no. 2 of 50 mm. With the magnification
degrees we desire we get the following
geometric relationships (l2 is expressed as
a function of l1 and MT by aid of the lower
row, and is inserted into the Gaussian lens
formula, and so on).

l1 =
5,36
4, 36

* f1 =
5, 36
4, 36

* 300 = 369mm

l2 = 4,36 * l1 =1609 mm
l3 = 14, 3* f 2 =14, 3* 50 = 715 mm

l4 =
14, 3
13,3

* f2 =
14, 3
13,3

* 50 = 53, 75 mm

5.3 Time multiplexing
The local receptive field of each S-neuron
is at the most 6*6 pixels large. Hence we
get up to 36 neurons per group which are
connected to one input neuron (see
appendix 1), and from this there are thus at
most n*36 synapses, where n is the
number of groups in the S-layer under
study. If every input pixel could be
projected onto n*36 grayscale pixels
simultaneously, all multiplications could
be carried out in one single step. One way
of doing this is illustrated in figure 20.
Here we have used the excessive

5. The Optical Implementation

 22

resolution of the first SLM to produce one
input image for each S-group. The weights
of each S-group are then gathered in a cor-
responding region of the second SLM.

Figure 20. One way of simultaneously car-
rying out all multiplications optically.

An input image resolution of 27*27
pixels means, with our nine S1-groups and
grayscale simulation taking up 4*4 binary

pixels per grayscale pixel, that we need
(27*3*6*4)2 (number of input pixels,
number of S-groups, number of S-neurons
connected to the corresponding input neu-
ron, number of grayscale pixels per side)
equal to 1944*1944 pixels in the SLM on
which we should produce the weight
mask! It is evident that, with our
maximum resolution of 320*320 pixels,
we cannot realize such a setup. Instead we
have to exploit the dynamics of the
modulators and use time multiplexing, i.e.
during the computation of one layer we
update the SLM several times. There are
several ways of realizing this. Our choice
is described in appendix 1.

6. Resultat

23

6. Results

S A FULL-SCALE realization of our
pattern recognition system is too
large a project to fit within the

framework of a diploma project, we chose
to simulate the whole system in Matlab. In
addition we made measurements verifying
the function of two crucial parts of the
optical setup. We tested how well our way
of simulating grayscale worked and we
tried projecting the patterns of the two
modulators onto one another and onto the
CCD camera.

6.1 The projection system
Basically the setup we constructed is the
same as that shown in figure 19, but for
the sake of simplicity we sometimes chose
solutions which would not work in a real
system. For instance, in order to get suffi-
cient light intensity, we used a red He-Ne
laser with wavelength 632.8 nm as primary
light source. This has some distinct draw-
backs in our amplitude modulating setup
since the coherence of the laser light gives
rise to a number of undesired interference
phenomena.

In order to realize our optical system,
which in its entire length would not fit on
our optical bench, we were forced to use
two mirrors. Since dust, fat and dirt on the
optical components of the setup have a
large impact on the performance of the
system, the number of components should
be kept at a minimum. In a final version of
our system the mirrors should therefore be
removed.

Figure 21. In testing the projection tech-
nique we built a modified version of the
setup in figure 19.

The lenses of the beam expander were
not of the best quality. This gave a distinct
effect as aberrations on the final image re-
corded by the CCD camera.

It turned out to be difficult to achieve
just the right degree of magnification
between the different steps. All
components have a certain thickness which
complicates the exact distance
measurements needed to realize the
theoretically constructed system. For our
tests we settled with magnifying powers
close to the desired.

In our test of the projection system we
showed two different images on the modu-
lators. The result is shown in figure 22.
Apart from the image of the two
superposed SLM patterns, we also show
the image recorded by the camera when
one, or both, of the modulators were
cleared, as well as when one or both
modulators were removed from the setup.
These images are added to clearly
demonstrate the contributions of each
SLM in its different states.

A

6. Results

 24

Figure 22. The upper row shows the superposition of the two modulator patterns. In the first
picture the 320*320 modulator is cleared and a pattern is set on the 120*120 modulator. In
the next the latter is cleared and the former is set to show a different pattern. The upper right
picture shows the image obtained when both SLMs are set with patterns. The ratio in pixel
size between the images of the two modulators is approximately the one desired for use in the
neural network.

In order to give an idea of the unwanted contributions to the final image from the
different components, we show in the lower row the image obtained without modulators, with
only one (cleared) modulator, and with both modulators cleared, respectively. In the first
picture we have inserted an extra transmission filter since the CCD camera would otherwise
get overexposed. A large part of the undesired effects seen are interference effects and would
disappear if the light were incoherent.

6.2 Simulation of grayscale
Since our modulators lack grayscale we
have to simulate this in some way when
implementing the continuousvalued weight
mask. We chose the method described in
chapter 5.1.

The number of SLM pixels per
grayscale pixel sets the number of levels in
which the weights are quantized. To find
the lowest number of simulation pixels
which gives reasonable performance I
made simulations with different number of
quantization levels, as well as with

continuous weight values, and studied the
response from the S2 groups to the same
input. The result is presented in figure 23.
It turned out that already with 10
quantization levels, that is 3*3 SLM pixels
per grayscale pixel, we got the same
answer as with continuous weights. At the
start of the project the algorithm was
however slightly different, and I got
deviations at this level. Hence, I have used
4*4 pixels for grayscale simulations in my
system.

6. Results

25

Figure 23a. The output of the S2-layer
when the input is the digit 5 in the font
Monaco. The weight mask has no
grayscale, i.e. we have binary weights.

Figure 23b. As in a) but with five level
grayscale.

Figure 23c. As in a) but with ten level
grayscale.

Figure 23d. As in a) but with seventeen
level grayscale.

Figure 23e. As in a) but with continuous
grayscale.

We thus use 4*4 pixels of SLM no. 2 to

represent one weight. These 16 pixels
should be projected onto one pixel of the
CCD camera5 and the intensity recorded
will attain one of 17 possible levels. If all
16 pixels are black (the weight value is
zero) or if the input neuron is silent, no
light falls on the camera pixel. For each
pixel of SLM no. 2 which is switched to
the transparent state, the recorded intensity
should increase with a fixed value. Finally,
when all pixels are transparent, the maxi-
mum value should be attained.

We tested this technique by irradiating
a part of the modulator (active area: 25*25
mm) with a 632.8 nm HeNe-laser beam of

5In reality we project it upon one ‘macro-pixel’,
consisting of 2*3 physical CCD-pixels. This is due
to the rectangular (non-square) pixel shape of the
camera. See section 5.2.

sgroup 1

2 4 6 8

2
4
6
8

sgroup 2

2 4 6 8

2
4
6
8

sgroup 3

2 4 6 8

2
4
6
8

sgroup 4

2 4 6 8

2
4
6
8

sgroup 5

2 4 6 8

2
4
6
8

sgroup 6

2 4 6 8

2
4
6
8

sgroup 7

2 4 6 8

2
4
6
8

sgroup 8

2 4 6 8

2
4
6
8

sgroup 9

2 4 6 8

2
4
6
8

sgroup 10

2 4 6 8

2
4
6
8

sgroup 11

2 4 6 8

2
4
6
8

sgroup 12

2 4 6 8

2
4
6
8

sgroup 13

2 4 6 8

2
4
6
8

sgroup 14

2 4 6 8

2
4
6
8

sgroup 15

2 4 6 8

2
4
6
8

sgroup 1

2 4 6 8

2
4
6
8

sgroup 2

2 4 6 8

2
4
6
8

sgroup 3

2 4 6 8

2
4
6
8

sgroup 4

2 4 6 8

2
4
6
8

sgroup 5

2 4 6 8

2
4
6
8

sgroup 6

2 4 6 8

2
4
6
8

sgroup 7

2 4 6 8

2
4
6
8

sgroup 8

2 4 6 8

2
4
6
8

sgroup 9

2 4 6 8

2
4
6
8

sgroup 10

2 4 6 8

2
4
6
8

sgroup 11

2 4 6 8

2
4
6
8

sgroup 12

2 4 6 8

2
4
6
8

sgroup 13

2 4 6 8

2
4
6
8

sgroup 14

2 4 6 8

2
4
6
8

sgroup 15

2 4 6 8

2
4
6
8

sgroup 1

2 4 6 8

2
4
6
8

sgroup 2

2 4 6 8

2
4
6
8

sgroup 3

2 4 6 8

2
4
6
8

sgroup 4

2 4 6 8

2
4
6
8

sgroup 5

2 4 6 8

2
4
6
8

sgroup 6

2 4 6 8

2
4
6
8

sgroup 7

2 4 6 8

2
4
6
8

sgroup 8

2 4 6 8

2
4
6
8

sgroup 9

2 4 6 8

2
4
6
8

sgroup 10

2 4 6 8

2
4
6
8

sgroup 11

2 4 6 8

2
4
6
8

sgroup 12

2 4 6 8

2
4
6
8

sgroup 13

2 4 6 8

2
4
6
8

sgroup 14

2 4 6 8

2
4
6
8

sgroup 15

2 4 6 8

2
4
6
8

sgroup 1

2 4 6 8

2
4
6
8

sgroup 2

2 4 6 8

2
4
6
8

sgroup 3

2 4 6 8

2
4
6
8

sgroup 4

2 4 6 8

2
4
6
8

sgroup 5

2 4 6 8

2
4
6
8

sgroup 6

2 4 6 8

2
4
6
8

sgroup 7

2 4 6 8

2
4
6
8

sgroup 8

2 4 6 8

2
4
6
8

sgroup 9

2 4 6 8

2
4
6
8

sgroup 10

2 4 6 8

2
4
6
8

sgroup 11

2 4 6 8

2
4
6
8

sgroup 12

2 4 6 8

2
4
6
8

sgroup 13

2 4 6 8

2
4
6
8

sgroup 14

2 4 6 8

2
4
6
8

sgroup 15

2 4 6 8

2
4
6
8

sgroup 1

2 4 6 8

2
4
6
8

sgroup 2

2 4 6 8

2
4
6
8

sgroup 3

2 4 6 8

2
4
6
8

sgroup 4

2 4 6 8

2
4
6
8

sgroup 5

2 4 6 8

2
4
6
8

sgroup 6

2 4 6 8

2
4
6
8

sgroup 7

2 4 6 8

2
4
6
8

sgroup 8

2 4 6 8

2
4
6
8

sgroup 9

2 4 6 8

2
4
6
8

sgroup 10

2 4 6 8

2
4
6
8

sgroup 11

2 4 6 8

2
4
6
8

sgroup 12

2 4 6 8

2
4
6
8

sgroup 13

2 4 6 8

2
4
6
8

sgroup 14

2 4 6 8

2
4
6
8

sgroup 15

2 4 6 8

2
4
6
8

6. Results

 26

Gaussian cross section and a diameter of
approximately 3 mm. We wanted to assure
ourselves that different combinations with
the same number of transparent pixels give
the same intensity, as well as that the
intensity difference when switching one
pixel really is constant, no matter in what
part of the grayscale we are.

In the first experiment we let the whole
SLM, except for 4*4 illuminated pixels in
the center, be constantly non-transparent.
We made 17 measurements with an in-
creasing number of transparent center pix-
els. In the second experiment we repeated
the same grayscale pattern over the whole
active area of the SLM

Figure 24a. The intensity variation as a
function of the number of transparent SLM
pixels in one grayscale pixel.

Figure 24b. As above, but here the
grayscale pattern is repeated over the
whole active area of the SLM.

As can be seen in the graphs the
grayscale simulation seems to be working
well. The relationship between the number
of transparent pixels and the light intensity
is practically linear.

For each graylevel (that is, a certain
number of transparent pixels) we also tried
several different configurations of the six-
teen pixels of the grayscale pattern. The
intensity turned out to be configuration in-
dependent, just as we desired.

6.3 The neural network
algorithm
The performance of the neural network
algorithm is evaluated from several
different points of view. The response of
the output layer is in all cases used as the
measure. This is strongly dependent of the
number of images used to train the layer.
Therefore we have compared three
different weight setups to the output layer.
The first is obtained by training on one
font only (Courier), the second by training
on three fonts (of which one is italic) and

3

4

5

6

7

8

0 5 10 15 20

One greyscale pixel

In
te

ns
ity

Number of transparent SLM pixels

The same greyscale pixel repeated
over the whole SLM area

In
te

ns
ity

Number of transparent SLM pixels per
greyscale pixel

0

1

2

3

4

5

6

7

0 5 10 15 20

6. Results

27

the third is a result of training with five
different fonts (one italic).

In the training of the system I started by
evaluating all calculations which are re-
quired several times (for instance the
output of previously trained layers for each
of the input patterns) and the result was
saved in a file. When a result was needed
during the training it could be loaded from
disk instead of reevaluated, thus saving
lots of time.

Figure 25. The seven different fonts used
for the evaluation of the identification sys-
tem.

For each output layer weight setup we

analyzed the performance of the system
with regard to the following abilities:

• How well does the system general-

ize? Can it identify a digit independ-
ent of how it is drawn? Are some
digits harder than others to identify?

• How sensitive is the system to dis-

placements of the digit to be identi-
fied?

• How does scaling of the digit affect

the system performance?

• How sensitive is the system to dis-

turbances like noise or erased
pixels?

6.3.1. Generalization
Even though the structure with feature de-
tectors gives good possibilities to find the
essential features of each digit and
generalize between different fonts, it is
quite obvious that the number of training
fonts is crucial for the performance of the
output layer. Figures 26-28 show the
results when we train with one, three and
five fonts, respectively. Figure 26 shows
how the total error, i.e. the sum of the
errors from all neurons of the output layer,
is changed during the training process.
Figures 27 to 29 show the response from
the 10 output layer neurons when digits
written with the seven different test fonts
are presented to the system. The leftmost
bar in each histogram shows the outputs of
the 0-neuron, the next for the 1-neuron,
and so on. The number above each
histogram gives the ratio between the
highest and second highest output value,
and hence it is a measure of how certain
the system is in its answer. For the fonts
not in the training set of the system, I have
given the fraction of correct answers.

Note that in going from figure 27 to fig-
ure 29, the number of test fonts is reduced
from six, via four, to two. It would of
course have been a better comparison if all
systems had been tested with the same
number of unknown fonts, but as the proc-
ess of preparing training fonts is quite
time-consuming, I had to settle with a
compromise in this matter.

Figure 26a. Error during training on one
font (Monaco).

0 50 100 150 200 250 300 350 400 450 500

-0.2

0

0.2

lap

er
ro

r

error during mon-training

6. Results

 28

Figure 26b. Error during training on three
fonts (Monaco, Chicago, Times italic).

Figure 26c. Error during training on five
fonts (Monaco, Chicago, Times italic,
Courier, simple handwritten).

Figure 27. Generalization capability after training the output layer with one font (Monaco).
For each combination of font and digit there is a bargraph illustrating the response of the
output neurons. The number above each graph is the largest response divided by the second
largest response. Note that the font which is always correctly classified (Monaco) is the one
used for training. The result on this font does thus not reflect the generalization capability of
the system.

0 50 100 150 200 250 300 350 400 450 500

-0.2

0

0.2

lap

er
ro

r
error during monchtimk-training

0 50 100 150 200 250 300 350 400 450 500

-0.2

0

0.2

lap

er
ro

r

error during monchtimkcomin-trainingerror during monchtimkcosim-training

co ch mon timk helk pal

2.759 4.215 1.199 1.441e+17 1.686 2.279 1.834

3.103 2.569 4.419 2.005e+17 1.771 1.85 2.7

1.424 3.412 1.547 2.306e+17 2.139 4.077 1.099

1.283 1.24 4.018 4.27e+16 1.481 1.01 1.322

1.389 2.794 1.963 1.281e+17 3.313 1.837 4.14

1.168 1.261 1.336 1.647e+17 1.832 2.933 1.086

1.142 1.227 1.846 1.214e+17 1.609 1.568 1.299

1.836 1.205 1.818 7.951e+16 1.577 5.59 2.199

1.034 1.152 1.189 9.608e+16 1.637 1.12 1.247

1.731 1.538 1.023 2.882e+17 1.865 1.719 1.371

0
1
2
3
4
5
6
7
8
9

Number of correct answers:
6 4 7 10 5 5 5

Digit
to be
identi-
fied:

Testfont:
sim

6. Results

29

Figure 28. Generalization ability after training the output layer with three fonts (Monaco,
Chicago, Times italic). For an explanatory text, see caption to figure 27.

Figure 29. Generalization ability after training the output layer with five fonts (Monaco, Chi-
cago, Times italic, Courier, simple handwritten).

min co ch mon timk helk pal

2.82 3.243 1.798e+14 2.031e+14 2.209e+14 7.769 1.517

3.431 3.654 2.553e+13 5.457e+13 7.748e+14 5.451 2.846

1.039 5.547 1.869e+14 1.094e+14 1.126e+15 3.649 1.104

1.57 1.181 2.862e+14 9.316e+13 1.235e+14 1.331 1.501

1.223 1.954 2.212e+14 9.519e+13 2.597e+15 2.853 2.736

1.222 1.34 2.482e+14 1.477e+15 2.895e+14 2.803 2.172

3.528 1.199 1.283e+14 2.671e+14 1.162e+15 2.011 1.59

12.31 1.347 2.599e+14 4.931e+14 1.116e+14 5.147 1.941

1.921 2.114 6.904e+14 2.935e+14 4.546e+14 2.189 4.58

2.232 2.433 7.217e+13 4.568e+14 2.018e+14 5.089 2.799

0
1
2
3
4
5
6
7
8
9

Number of correct answers:
9 8 10 10 10 8 9

Digit
to be
identi-
fied:

Testfont:
sim

min co ch mon timk helk pal

5.227e+04 1.009e+04 2.713e+04 2.139e+04 3.232e+04 5.051 3.152

3578 2052 2.379e+04 2.608e+04 7.593e+04 4.949 17.11

1.274e+04 1.161e+04 3.498e+04 1.602e+04 1.706e+04 3.826 1.321

4.156e+04 2.673e+04 1.03e+05 8.779e+04 5.915e+04 1.975 1.106

8.445e+04 5.782e+04 3.067e+04 1.715e+04 2.226e+04 2.129 4.084

8.012e+04 4.651e+04 5.153e+04 2.42e+05 3.62e+04 1.313 8.102

9.671e+04 1.561e+05 2.983e+05 5.141e+04 1.328e+05 2.138 3.162

1.158e+04 4.27e+04 4.192e+04 3.377e+04 1.389e+04 5.05 1.788

1.54e+05 8.271e+04 4.238e+04 1.202e+05 5.233e+04 3.831 3.995

2.719e+04 4.245e+04 6.819e+04 3.806e+04 4.525e+04 6.377 3.526

0
1
2
3
4
5
6
7
8
9

Number of correct answers:
10 10 10 10 10 9 9

Digit
to be
identi-
fied:

Testfont:
sim

6. Results

 30

We see from figure 26 that the error
very quickly becomes vanishingly small
when the number of training fonts is low.
The neurons quickly learn to identify the
few images used in the training. On the
other hand, it is apparent from figures 27
to 29 that the generalization ability is poor
after such training. The number of
erroneous identifications is much higher in
figure 27 than in figures 28 and 29. It is
also clear that the system gives more
certain and distinct identifications of digits
in untrained fonts, as the number of
training fonts is raised.

Apart from these general observations
some small comments to the figures may
be added. First, we see that the digits
correctly identified, independent of font, in
all three systems are the 1 and 4. A
possible explanation is that they both
consist almost only of straight lines, and
hence suit the feature detectors of the first
S-layer well. Against this hypothesis
stands the poor performance when the
digit 7, also practically free from curves, is
given as input. The most evident
explanation to this should be the large
similarity between the 7 and the 2. When
the system fails to identify a 7, the faulty
answer is always 2.

It is apparently much more difficult to
identify the digits 3 and 5. The many
curves of the former is probably the
explanation to the poor performance in
identifying 3:s. In the case of 5:s this is
only partly true. The errors might also to a
large extent be due to the similarity of the
digit 5 with for instance 3, 6, 8 and 9.

6.3.2. Displacements of the input
image
In the remaining evaluation tests we chose
one input image (the digit 5 in Monaco)
and distorted it in various ways. The
general conclusion from these tests is that
it is practically only the last system
(trained with five different fonts) that has a
chance of seeing through the distortions.
As is evident from the figures below, the

systems trained with fewer training images
are extremely sensitive to disturbances of
all kinds. The following comments all
concern the best system.

First we tried moving the 5 around in
the 27*27 pixel input image, and studied
how the system reacted. This is in some
sense a test of the performance of the C-
layer. The result is presented in figures 29-
32.

Figure 29. The input digit is shifted step-
wise to the right.

Figure 30. The input digit is shifted step-
wise to the left.

1.14 2.515 1.713 1.313 1.253

2.778 1.136 1.407 1.523 1.248

12.53 2.51 1.926 2.325 1.506

1 training font

3 training fonts

5 training fonts

Normal

1.14 2.515 1.713 1.313 1.253

2.778 1.136 1.407 1.523 1.248

4.988 2.059 3.624 2.702 9.436

1 training font

3 training fonts

5 training fonts

Normal

6. Results

31

Apparently the system is much more
sensitive to displacements to the right than
to the left. Perhaps this changes if a differ-
ent digit is chosen as test object.

Figure 31. The input digit is shifted step-
wise downwards and upwards.

The system seems to be more sensitive
to displacements downwards than
upwards. Even if the system answer is
correct in all cases, in particular the
response of the 3-neuron becomes too
strong at displacements downwards.

Figure 32. The input digit is shifted step-
wise both laterally and vertically.

In diagonal shifts the system initially
does quite well for all displacement direc-
tions. Already at a shift of two pixels,
however, the system becomes unreliable.

6.3.3. Scaling
I tried scaling the 5 in five steps. The sys-
tem was not markedly disturbed by any of
these changes, cf. figures 33 and 34.

Figure 33. The sensitivity to size reduction
of the input digit.

Figure 34. The sensitivity to magnification
of the input digits.

6.3.4. Noise

Normal

1.32 1.512 1.293 1.096 1.071 1.097

2.541 1.758 1.194 1.852 1.706 2.137

2.25 1.491 1.618 8.068 2.953 1.724

1 training font

3 training fonts

5 training fonts

Normal

1.064 1.04 1.224 3.477 1.484 1.081 1.707 1.519

1.659 1.323 1.056 1.388 1.346 1.808 2.413 2.082

12.23 1.699 4.057 2.461 3.259 1.801 5.771 2.393

1 training font

3 training fonts

5 training fonts

1.925 1.112 1.506 1.386 1.143

1.832 1.282 1.128 1.206 1.234

1.902 5.93 3.652 3.922 4.982

Normal

1 training font

3 training fonts

5 training fonts

Normal

1.092 1.092 1.566 1.09 1.037

1.799 1.799 1.909 1.943 1.493

10.03 10.03 5.186 8.223 13.85

1 training font

3 training fonts

5 training fonts

6. Results

 32

A most interesting test series was the one
where we disturbed the input with noise of
various kind. I tried adding an increasing
amount of random black pixels in the im-
age, I removed an increasing amount of
pixels in randomly selected parts of the
digit, and finally I tried removing parts of
approximately equal size but in different
places. The result is shown in the
following three figures.

Figure 35. The sensitivity to noise in the
input.

The system handles noisy input surpris-
ingly well. The lower system even gives a
correct response for the noisiest picture. A
curiosity is that the confidence of the sys-
tem is largest for the third image. With
even more noise, however, the confidence
decreases drastically.

Figure 36. Increasing number of erased
pixels in the input digit.

Figure 37. One part of the input digit is
missing. In the different images different
parts (of approximately the same size)
have been removed.

Figure 36 offers no surprises. The con-

fidence decreases continually as we
remove more of the digit. The results from
the next test are more interesting. We have
removed different parts, of approximately
the same size, from the digit, and we see
that the system reacts very similarly for all
images but one. In the fourth image the
system hesitates strongly between a 3 and

Normal

1.326 1.352 1.032 1.227 1.2 1.437 1.041 1.206

1.064 1.061 1.183 1.35 1.308 1.568 1.037 1.25

5.755 5.874 8.821 3.39 3.788 2.332 2.39 1.645

1 training font

3 training fonts

5 training fonts

Normal

1.284 1.289 1.113 1.63 1.586

1.658 1.284 2.958 2.036 1.562

6.072 4.571 3.557 1.147 1.42

1 training font

3 training fonts

5 training fonts

Normal

1.326 1.287 1.344 1.455 1.256

1.064 1.248 1.335 1.455 1.179

5.755 3.231 5.287 1.747 5.271

1 training font

3 training fonts

5 training fonts

6. Results

33

a 5. If we look at the images the
explanation to this is apparent. The part
that has been removed from this picture is
vital for an unambiguous interpretation of
the image. Look at figure 38. If instead of
the removed vertical line we insert a
diagonal one we get a perfect 3. Hence, we
can no longer say whether the digit is a 3
or a 5, and the system responds correctly
in hesitating between the two answers.

Figure 38. If a certain part of the 5 is re-
moved it is no longer possible to say which
digit is shown.

6.3.5. False inputs
As a final test we gave the system letters
as input. A better version of the output
layer would have 11 neurons, with the
eleventh representing non-digit inputs. Our
system does not have this possibility, and
hence it answers with the digit most
resembling the input.

Figure 39. The reaction on letters as input.

The reaction on the letter A is, in my
opinion, rather odd, but the response on
the other letters is quite understandable.
The strong response from the 0-, 3- and 8-
neurons on the letter B is not surprising
since all these letters can, without too large
modifications, be constructed out of the
letter. When X is given as input it is the 3-,
7- and 8-neurons which react strongly,
which is also quite reasonable.

6.4 Optical implementation ver-
sus numerical
Since I have not been able to implement
the system optically it is difficult to give a
good picture of the efficiency of the
system. The simulated system, which
simulates the optically implemented
system, is most probably a lot slower than
the real optical-numerical system, as well
as an entirely numerical system, would be.
It took approximately 3 hours on a very
powerful computer (twin 150 Mhz Hyper-
Sparc processors, 224 Mbytes RAM) to
perform the training from scratch, and the
identification of a digit took more than a
minute on the same machine. These times
would probably be much shorter had the
program been written in a more efficient
language than Matlab.

In order to get a picture of the extent to
which calculations would be performed
optically in a real system, we have to look
at the algorithm for calculation of the S-
neuron responses (appendix 3). Let’s study
how the responses from the 3872 neurons
of the first S-layer are evaluated.

First the responses of the 484 neurons
of the first I-layer have to be calculated.
This is done according to equation (5) in
appendix 3. Since each I-neuron is
connected to 36 input neurons, the
evaluation of the formula requires 17424
multiplications and as many summations
in total. All these multiplications are
performed optically in my system, while
the summations are done numerically.

1.601 1.835 1.012

2.085 1.161 1.801

2.125 1.334 1.19

1 training font

3 training fonts

5 training fonts

6. Results

 34

Furthermore, one square root per I-neuron
is performed numerically.

For the evaluation of the S1-layer re-
sponse, we use equation (4). The number
of optically performable multiplications
per S-group is the same as for the I-group,
which means we get 139 392 optical multi-
plications in total. The computer performs,
apart from the summing of the correspond-
ing products, a small number of summa-
tions, multiplications and divisions, as
well as one max function per S-neuron.

The result is summarized in table 2.

Table 2. Number of operations of different
kind during the evaluation of the responses
from the S1-layer neurons.

 Optical Non-optical
Multiplications: 156 816 15 488
Additions: 168 432
Divisions: 3872
Square root ex-
tractions:

 484

Search for
maxima:

 3872

It is apparent from this little study that

there a significant number of operations
remain to be done in the computer. Hope-
fully this number can be reduced some-
what. The max function could, for exam-
ple, be performed by a hardware treating
negative numbers as zero, and it is
possible that equation (5) in appendix 3
could be modified so that the square root
may be avoided.

The profit of the optical system is that
the multiplications are performed in
parallel outside the computer. The width of
this profit depends partly on the system
dimensions, and partly on the computer
processor. In a modern mathematics
processor a multiplication is performed
almost as fast as an addition, while in, for
instance, an 8-bit Motorola processor it
takes 32 clock cycles compared to the 2
needed for an addition. Even in a fast
processor, however, the multiplications are
performed in series, and since the number

of multiplications becomes very large as
the dimensions of the system increase, the
time gain of an optical implementation
might be considerable. A dimensional
increase of the system must, however, be
accommodated by an increase in resolution
of the SLMs. Otherwise we must use time
multiplexing and the time gain would
decrease.

7. Discussions for further work

35

7. Discussion for further
work

HE OBJECTIVE of this work has been
to develop a system showing new
ways of implementing neural net-

works for pattern recognition. The
ambition has not been to construct a
system with a particularly high efficiency.
Nevertheless, I think that some valuable
conclusions can be drawn from the results.

The equipment I’ve been using as well
as the algorithm I developed, suffers from
a number of important shortcomings, and
in case of a continuation the system must
thus be improved in various ways. This is,
however, by no means an impossible task.
The SLMs based on ferroelectric liquid
crystals, which today are state of the art
and commercially available, feature much
higher resolution and are much faster than
the components I’ve been using, and even
some which also fulfill my demands con-
cerning grayscale are available. Then we
have good possibilities of constructing a
fast and well performing system.

In this chapter I give some ideas on
how one could further develop the system
and in this way get a substantial
improvement in performance. These
developments concern the software as well
as the hardware.

7.1 Improvements on the algo-
rithm
Both in the design and in the training of
the system a large number of parameters
figure. Many of these I have given values
more or less randomly since the time scope

of the project didn’t allow a thorough
investigation of their influence. In a
continuation it might be wise to make a
deeper analysis of them and to try a larger
number of different solutions.

The dimensions of my network have
been chosen to fit the optical equipment I
had access to. It would of course be very
interesting to study the performance of a
system of different dimensions. A higher
resolution would for instance allow us to
use a larger local receptive field. Then we
could easily define a greater number of in-
teresting features, like for instance curves
and angles. These tests can be easily per-
formed with the Matlab simulation I have
developed.

7.2 Better Spatial Light Modu-
lators
Doing an optical implementation is not
really worthwhile until we have
continuous instead of binary inputs to each
layer. First then can we talk about
performing multiplications optically. With
the solution proposed in this work it is
more or less an AND-operation between a
binary and a continuous matrix that is
performed optically. To improve the
situation we need either an SLM with
grayscale or grayscale simulation using
time multiplexing. The latter solution is in
principle available with the present
equipment, but the low speed of the

T

7. Discussions for further work

 36

modulators would render the system
practically useless.

The point in realizing a neural network
optically in the way I have proposed is that
a large number of multiplications can be
performed in parallel and at the speed of
light. The Achilles heel of the system is
the connections between the computer and
the SLMs and the camera. They must be
made as fast as possible and used as little
as possible. The spatial resolution of the
SLMs must therefore be so high that we
can perform all multiplications for a
complex simultaneously, instead of
dividing them in a multiplexing scheme as
I have been forced to do.

If the pixel number of the modulators is
drastically increased we can also afford to
increase the resolution of the system, i.e.
use a larger matrix to describe the images.
This will of course improve the
possibilities of obtaining a well
functioning system.

Whereas the two SLMs at my disposal
for this work had 128*128 and 320*320
binary elements respectively, and a typical
frame rate of 6 Hz, modern FLC-SLMs are
approaching 1000*1000 in resolution and
have frame rates lying between 1 kHz and
10 kHz. An FLC-SLM with 256*256 pix-
els which allow a continuous (analog) gray
scale is also commercially available
(Boulder Non-Linear Systems, USA).

7.3 A new illumination
technique
It is very important that the illumination of
the input SLM is uniform. Using a simple
beam expander this is hard to achieve, and
it is therefore desirable to find another illu-
mination method. An exciting alternative
would be to use a so called kinoform to
obtain a suitable illumination of the modu-
lator. With the aid of the kinoform we can
transform an incoming coherent beam into
a ray matrix of desired dimensions, see
figure 40 [10].

Figure 40. With the aid of a kinoform we
can divide an incoming beam into a matrix
of rays.

Each ray has in itself a Gaussian cross

section and can hence not be used to
illuminate several pixels, since this would
lead to an uneven illumination. The point
is instead to create, with the aid of the
kinoform, a ray matrix where the ray cross
section is much less than the smallest pixel
side of the system, and the distance
between two rays is the same size as the
pixel side. In this way each pixel of the
weight SLM, which has the smallest
pixels, is illuminated by exactly one ray.
Each input pixel is illuminated by several
rays since one input pixel should be
multiplied with several weight pixels, see
figure 41!

By placing a lens after the kinoform we
can collimate the ray bundle so that the
rays propagate parallel to each other. If we
have a tailor-made system where ray
matrix dimensions, pixel number and pixel
size are adjusted to each other, we no
longer need any projecting lenses! The one
dimensional system of figure 41 is an
example of this. We see, however, that the
diameter of the kinoform rays varies in a
Gaussian fashion. This means that the ray
matrix is well defined only within a
limited space. Both modulators, as well as
the CCD-camera, must therefore be fit into
this space.

Since the ray must be significantly
smaller than a weight pixel (with
grayscale) in order not to get cross talk
between pixels, we can no longer use
spatial gray scale simulations. That
method is based on the uniform
illumination of several pixels, and is thus
ruled out. Therefore we need to use
sequential grayscale simulation or get an
SLM with real analog grayscale. As the

7. Discussions for further work

37

speed of FLC modulators can be very
high, even the former alternative may not
be so bad at all. The bistability of the SLM
means that only the pixels that should
change state need to be readdressed. Using
a smart addressing algorithm, possibly
inspired from modern techniques for video
compression (MPEG, Quicktime, etc.)
where only the parts of the picture
changing between frames are treated, the
time needed to prepare the SLM for the
next exposure can thus be further reduced.

If in addition we want continuous
valued input, which of course is desirable,
the input SLM must be able to show
grayscale. For this purpose a nematic SLM
could also be suitable. Its drawbacks,
mainly the larger pixel size and slower
updating, lead to no major consequences
since the pixels of the input modulator are
large and it is not readdressed as often as
the weight SLM.

Figure 41. Optical system without projec-
tion lenses. With the aid of a kinoform and
a lens we have created a matrix of parallel
propagating rays. The different
components must be adapted to each other
concerning dimensions. Each component
must also be so thin that the whole
sandwich is contained within the depth of
field of the Gaussian rays.

7.4 Optical implementation of
the output layer
Since the output layer is not of Neocogni-
tron type a different technique must be
used to implement it optically. We now
run into the difficulty of implementing
negative weights with an optical system.
On the other hand, both inputs and outputs
to this layer are vectors which gives us
new possibilities of performing both
multiplications and summations optically
in a simple way.

Figure 42. An optical vector-matrix multi-
plicator. For the sake of clarity in the
drawing the dimensions of in- and output
spaces in the figure are much smaller
(simplified to a small number of pixels)
than in our system.

Perhaps the most attractive solution is
to use the setup of figure 42. This is called
an optical vector-matrix multiplicator and
appears frequently in the literature [2,3,5,
8]. The vector in our case consists of the
output signals from the C2 layer, while the
elements of the matrix are the weights
between the C2 layer and the output layer.
For the sake of clarity the dimensions of
the system in the figure are much smaller
than in our system.

The input, i.e. the C2 vector, is pre-
sented for instance by a one-dimensional
horizontal SLM or a LED array, and its
image is projected through a cylindrical
lens onto a two-dimensional SLM such
that each input pixel illuminates one
column of the weight-SLM. The two-
dimensional weight-SLM must have a

1 pixel of SLM

Pixels in SLM 2
representing weights
with which the signal
(represented by the
SLM 1 pixel) is to be
multiplied.

CCD-pixels (must be the
same number as in SLM

System with kinoform beam-splitter

7. Discussions for further work

 38

resolution of at least 135*10 grayscale
pixels (column i in the matrix contains the
weights from the C2 neuron i to the 10
output neurons, while row j holds the
weights from the 135 C2 neurons to output
neuron j).

On the other side of the weight matrix
we place another cylindrical lens, turned
90 degrees compared to the first. This
collects the light from one whole row in
the weight matrix to one pixel of the
vertical detector furthest to the right in the
figure. The light intensity falling on pixel j
becomes:

 I j = ciwij
i=1

135

!

where ci are the 135 C2 signals and wij are
the weights between them and the output
neuron j. The output from detector pixel j
thus corresponds exactly to the output of
output neuron j, provided that wij>0. Since
we have negative weights between the C2-
and the output layer we must divide the
evaluation in two steps. In step 1 we ad-
dress the SLM with all positive weights
while the negative ones are set totally
black. When the detector signal is recorded
and the result stored away, we instead set
all positive weights black while the other
pixels are set according to the magnitude
of the negative weights. The result from
this step is subtracted from the previously
stored data.

Appendix 1: Time multiplexing

39

Appendix 1
Time multiplexing

UE TO THE LIMITED resolution of
the spatial light modulators we
cannot simultaneously perform all

multiplications needed for the evaluation
of one neuron layer. Instead we have to
divide the task into several steps. There are
several ways of doing this and I will now
give an account for the method used in the
present system.

Figure A1:1. The upper left-hand corner of
the input image. The square drawn with
thick lines shows the size of the receptive
field. The number in a pixel indicates the
number of synapses connected to the neu-
ron represented by the pixel. These values
are a consequence of the way the receptive
fields of neighboring neurons overlap, and
the size of the fields (6*6 pixels). See fig-
ure 5b.

We chose to perform all multiplications

of one group in the S-layer before starting
with the next. In this way we minimize the

number of readdressing of the input SLM.
During the evaluation of the S1-layer we
need no readdressing, while on the other
hand, during the evaluation of the S2-layer
we have to readdress the input-SLM once
for each group in the C1-layer, since all of
the groups constitute the input for the S2
neurons.

The image constituting the input to the
first S-layer is set on the first SLM. Since
each input neuron is connected to between
1 and 36 S-neurons (the number decreases
towards the edges of the image, see figure
A1:1) every pixel in this SLM must be
projected onto a 6*6 pixel area of the
weight-SLM. With an input image
resolution of 27*27 pixels and a grayscale
simulation using 4*4 pixels for each S-
neuron we would hence need a weight-
SLM with 27*6*4=648 pixels per side. As
the SLM used in the present system has a
resolution of only 320*320 pixels we have
to perform a time multiplexing also for
each S-group.

We do this by dividing the 6*6 pixel re-
ceptive field into 4 parts of 3*3 pixels and
addressing the whole weight-SLM with
one such part at a time.6 The procedure is
illustrated in figure A1:2. We must thus
readdress the weight-SLM four times per
S-group during the evaluation of the S1-
layer. The input-SLM, on the other hand,

6In fact, this also puts too high demands on our
SLM since we would need a resolution of 324*324
pixels. We do a little bit of cheating, however, and
use only 3*3 SLM pixels for the grayscale pixels in
two rows along the edges of the image.

D

Appendix 1: Time multiplexing

 40

needs to be addressed only once, so all in
all the evaluation of the S1-layer comprises
4*9=36 readdressing of SLM no. 2.

When evaluating the S-layer of the sec-
ond complex the four groups of the C1-
layer constitute the input, and hence we
have to display these, one after the other,
on the first modulator. For each C1-group
we readdress the weight-SLM once for
every group in the S2-layer since the
weights to different groups are not the

same. Multiplexing of the synapses to one
group is, however, not needed this time
since the C1-groups only have 11*11 pix-
els. With a receptive field of 4*4 pixels
and grayscale simulation using 4*4 pixels
we need (11*4*4)* (11*4*4)=176*176
pixels in the weight-SLM, which is well
within the capabilities of the modulator at
our disposal.

Figure A1:2. Due to the limited resolution of our weight-SLM we must divide the evaluation
of each group in the S1-layer into four timesteps. In each step we display 9 of the 36 weights
on the weight-SLM. The partial sums are temporarily stored between the ”snap-shots” and
are added together at the end to yield the final result.

Appendix 2: The training of the S2-layer

41

Appendix 2
The training of the S2-
layer

HE SECOND S-LAYER is divided into
15 groups. As in the first S-layer,
the neurons of a group have the

same synaptic weight setup, but while the
input to the S1-layer is the system input
(i.e. the image of the digit to be identified),
the input to this layer consists of the C1-
layer. Since this is divided into four
groups, each signaling for one feature in
the input image, the features to be
recognized by the S2-neurons are
combinations of features extracted by the
first complex.

The goal of the training of the S2-layer
is to force each of its different groups to
specialize in one such combination. It is,
however, no simple task to come up with
15 suitable combinations, and therefore we
want the groups to search for them on their
own. In this appendix I give a detailed re-
view of how this self-organization is per-
formed.

A2.1 The groups compete
against each other
Our version of self-organization is based
on the one used by Fukushima in his first
Neocognitron version [9]. At the start the
S2-layer is given the weight setup
described in section 4.5, that is each group
is slightly inclined towards a combination
of ‘clean’ C1-features (see figure 15).
During the training of the groups of the S2-
layer, images of digits, one at a time, are

presented to the system. The first complex,
for which the training is completed,
performs its preprocessing and the outputs
of the C1-neurons are given as input to the
S2-layer. These neurons evaluate a
response based on the weights they have
for the moment.

Figure A2:1. Each competition is between
the 15 neurons which constitute a pile, i.e.
those with the same position within their
respective groups.

Due to the local connections from the
C1-layer, the input to a neuron will depend
on its position within the group; each
neuron sees only a fraction of the C1-layer.
Neurons in different groups but at the
same position, on the other hand, have
exactly the same input. Therefore it is
fitting to let the 15 neurons in such a ‘pile’
(see figure A2:1) compete with one
another. The neuron with the strongest
response is considered to have the best
adapted weights for the input to the pile,

T

Appendix 2: Träningen av S2-skiktet

 42

and therefore we update its weight setup,
and hence the weight setup of the whole
group, such that its predilection for this
particular kind of input is further
enhanced.

Since we practice weight sharing within
the groups this strategy must, however, be
somewhat developed. Different piles can
have completely different input, but this
does not prevent the same group from win-
ning competitions in several piles. Since
our objective is to specialize every group
in only one feature we cannot update the
weights every time one of its neurons wins
a pile competition. Therefore we also let
the neurons within a group compete, such
that among the neurons having won pile
competitions it is the one with the
strongest response that is chosen as
representative for the group. The weight
setup is updated in accordance with the
input seen by this neuron.

A2.2 Lateral inhibition and bad
conscience
Lateral inhibition means that competing
neurons inhibit each other. I have practiced
this during each pile contest in such a way
that the response from one neuron is low-
ered by the sum of the outputs of the other
neurons multiplied by a certain factor
(0,05 in my case). The purpose is to
strengthen the diversification between the
groups, i.e. making them specialize in
different features. If all 15 groups react
with approximately the same strength the
lateral inhibition will secure that the
neuron winning the pile contest has a small
chance of also winning the contest within
its group. This is desirable since we want
the weight setup of every group to be
changed towards one which differs from
that of the others. It is then a bad idea to
update the weights in accordance with an
input which triggers the other groups
almost as strongly.

A risk with self-organization is that the
two or three groups winning the first few

competitions quickly grow so much
stronger than the other groups that they
win all competitions, no matter what the
input is. In order to avoid this I use a trick
which is well known in this context – I
give the groups a ”bad conscience”. This is
implemented by introducing a variable for
each group holding the magnitude of its
conscience. During the pile contests the re-
sponse of each neuron is reduced by the
bad conscience of the group before being
compared to the corresponding values of
the other competitors. After a weight
update the bad conscience value of
updated groups is increased, while it is
reduced for all others. A group which has
had its weights updated will thus have a
harder time winning the next contest since
its conscience value has been increased.

A2.3 Updating of the weights
When all competitions centered around
one input image are finished it is time to
update the weights. The updating
algorithm is taken from Fukushima’s self-
organizing Neocognitron [9].

I go through the groups one after the
other. Every group which has won one pile
contest is updated in accordance with the
fragment of the input image seen by the
group representative. The input matrix de-
scribing this partial image is transformed
into a row vector by adding the second
row to the end of the first, and so on. This
vector is then normalized. The excitatory
synapses are updated according to the
following equations:

aij ! aij +"aij
"aij = q2 # ui $aij()
%
&
'

 (2)

The vector aij contains the weights from
the C1-layer to group no. j of the S2-layer,
and ui is the normalized input vector. The
factor q2 is the training speed. Since the S-
layers are of the same kind I use the same
notation as in equation 1. Note, however,

Appendix 2: The training of the S2-layer

43

that variables now refer to the weights and
input to the second S-layer.

The group’s inhibitory synapse is of
course also updated. This is done
according to the following rule

bj ! bj +"bj

"bj = q2 / 2 # $ % bj()
$ = ci # ui

&

'
(

)
(

 (3)

The vector ci contains the fixed normalized
weight setup to the inhibitory group of the
second S-layer. This vector is made such
that the weight setup to each C1-group has
the look of figure 9.

Appendix 3: The response algorithm of the S-neurons

 44

Appendix 3
The response algorithm
of the S-neurons

HE RESPONSE FROM the neurons of
the S-layer is calculated with the
following, perhaps a bit deterrent,

equation [4]:

usl k,n() = rl ! " x() =

= rl !"
1+ al # ,$,k() ! uCl%1

,n +$()
$&receptive field
'

=1

KCl%1

'

1 +
rl

1+ rl
! bl k() !$ l n()

%1

(

)

*
*
*

+

,

-
-
-

(4)

The indices S and C indicate the type of
neuron and the subindices indicate which
complex (1 or 2) it belongs to. The letter k
is used to index groups of the S-layer,
while ! is used for groups of the input
layer. The vector n indicates the position
within the group of the neuron. Let us
spend a couple of lines to motivate the
form of this important equation.

The function !(x)=max(0,x) ensures
that the neuron does not give a negative
response. The summation in the numerator
is a scalar product between the input and
the weight setup. In our optically
implemented system, the products

 al !, ",k() #uCl$1

!,n + "()

are calculated by means of optical proc-
esses. The first summation is done over all
groups of the preceding C-layer, and the
second over the local region of each group

to which the neuron is connected. The vec-
tor " is changed during the summation in
order to cover the whole receptive field
(see figure 5b). The equation is general
and applies to all S-layers, but for the first
complex the first summation sign is
unnecessary since the summation is over
the groups of layer C0, i.e. the system
input, where, of course, the number of
groups is 1.

In the denominator the weight bl(k) and
the value vl(n) appear. The latter is the out-
put from the I-neuron which is
geometrically equivalent to the S-neuron. I
will presently discuss how this is
evaluated. The weight bl(k) is the strength
with which the inhibitory sister neuron
affects the response from the S neuron.
The factor rl sets the feature selectivity of
the neurons in the group.

The response from the inhibitory neu-
rons is calculated according to equation
(5):

v l n() = c !() " uC l#1
$,n+ !()

!%receptive field
&

$ =1

KCl#1

&

(5)

The notations reappearing from equation
(1) have the same meaning as there. The
weights c(") are those leading to the in-
hibitory group. In contrast to the weights
a(") of the excitatory neurons, the inhibi-
tory weights are not the result of training.

T

45

They are fixed from the beginning such
that their sum equals one and distributed
so that the weight values are greatest in the
center of the perceptive field, decreasing
towards the edges.

In the original model of Fukushima,
where the inputs can be continuousvalued,
the C-weights are multiplied with the
square of the input signals. In our
simplified model we limit ourselves to
binary input signals for which taking the
square has no effect. We therefore leave it
out of our calculations.

Appendix 4: Matlabfiler

 46

Appendix 4
Matlab files

A4.1 The three main training files

A4.1.1 Start.m

%In this part we define all general variables and train the first S-layer.

%------------------------
%INITIALIZATION OF VARIABLES

clear
graypix=4; %Side of one grayscale pixel
s1viewsize=6; %Each S1-neuron is connected to s1viewsize~2
 %neurons in the input layer.
s2viewsize=4; %Each S2-neuron is connected to s2viewsize~2
 %neurons in the C1 layer.
inpside=27; %side of input matrix

groupsins1=8; %Number of groups in layer S1.
groupsinc1=groupsins1/2; %Number of groups in layer C1.
groupsins2=15; %Number of groups in layer S2.
groupsinc2=groupsins2; %Number of groups in layer C2.

s1side=inpside-s1viewsize+1; %Side of a group in S1.
s1=zeros(s1side*groupsins1,s1side);
 %The groups in a layer are stored above
 %each other in one matrix, that is s1
 %is a column of groups.
s1toc1=2; %Side of the area in S1 which is compressed
 %into one pixel in C1.
c1side=s1side/s1toc1; %Side of a group in C1.
c1=zeros(c1side*groupsinc1,c1side);
 %C1-matrix.
s2side=c1side-s2viewsize+1; %Side of a group in S2.

Appendix 4. Matlabfiler

47

s2=zeros(s2side*groupsins2,s2side);
 %S2-matrix.
s2toc2=2; %Side of the area in S2 which is compressed
 %into one pixel in C2.
c2side=s2side/s2toc2; %Side of a group in C2.
c2=zeros(c2side*groupsinc2,c2side);

r1=2; %Selectivity of S1-neurons.
r2=3; %Selectivity of S2-neurons.

outputsize=10; %Number of possible outputs.
output=zeros(1,outputsize); %Matrix to store output.

weightstos1=zeros(groupsins1+1,s1viewsize^2+1);
 %Each row holds the weights for one group.
 %The uppermost row of its field of view comes
 %first, followed by the second and so on.
 %Last comes the weight to the inhibitory group.
 %The weights to this group are stored in the
 %last row of the matrix.
weightstos2=zeros(groupsins2+1,groupsinc1*s2viewsize^2+1);
 %All groups in C1 are connected to each neuron
in %S2.
weightstooutput=zeros(outputsize,groupsinc2*c2side^2);
 %Each row holds the weights from all neurons
 %in C2 to one outputneuron.

SLM11=zeros(inpside*3); %During computation of S1 only 3x3-parts of
 %the 6x6-views can be treated at once.
SLM21=zeros(c1side*6); %During computation of S2 the whole 6x6 views
 %can be treated at once, but each C1-group must
 %be treated separately.

weightstos1(groupsins1+1,:)=getfixweights(s1viewsize,1);
weightstos2(groupsins2+1,:)=getfixweights(s2viewsize,groupsinc1);
 %The function we call calculates the weights
 %to the inhibitory group.
%-------------------------------------

%---------------------------------------
%TRAINING OF THE WEIGHTS TO S1
%The first S-layer is trained "directly".

getS1set; %The trainingset is formed in a separate file.

%Now we can train the weights to S1.
q=10; %Training efficiency.
c=weightstos1(groupsins1+1,1:s1viewsize^2);

Appendix 4: Matlabfiler

 48

for pic=1:size(trainingset,1)
 u=trainingset(pic,:);
 deltaa=q*c.*u;
 v=sqrt(c*u');
 deltab=q/1.5*v;
 weightstos1(pic,:)=[deltaa deltab];
end %pic
clear trainingset
%--

cd matfiles
save startresult
cd ..

A4.1.2 Selforg.m

%SELF ORGANIZATION OF WEIGHTS TO S2

clear
cd matfiles
load startresult
cd ..
pretrains2; %Before self organising starts we give
 %the weights a good starting point by
 %training them in a similar manner to
 %how we trained the weights to S1.

%------------------------------
%INITIALIZATIONS
q2=0.8; %Training speed.
genericname2='.raw.tab';
deltaconscience=0.05;
%After winning a contest the conscience of the group is increased =>
%=> its chances of winning the next contest decrease.

%-----------------------------
%NOW BEGINS THE SELFORGANIZATION
%In this version we update all groups after each input-image is gone through.

conscience=zeros(groupsins2,1);
sopreproc;

for lap = 1:40
 indexvector=shuffle(outputsize); %Shuffles the pictures.

 for picturenumber=1:length(indexvector)
 %Read input picture.

Appendix 4. Matlabfiler

49

 index=num2str(indexvector(picturenumber));

 r=rand;
 %randomize style of training picture.
 if r<0.33
 style='min';
 elseif r<0.66
 style='ch';
 else
 style='co';
 end %if

 name=[style index 'c1'];
 cd opticresults
 load (name)
 cd ..
 opts2;

 %Time for the contest.
 contest;

 %We now have the representatives for each group. Time to update
 %the weights.
 update15groups;
 %This procedure also updates the
 %conscience-values.

 end %picturenumber
 q2=q2*0.95;
 %After each lap the trainingspeed
 %is lowered.
end %lap

cd matfiles
save selforgresult
cd ..

A4.1.3 Trainoutput.m

%This version trains on the following pictures:
%mon, ch, timk
%It runs 2000 laps.

clear
cd matfiles
load selforgresult
cd ..

Appendix 4: Matlabfiler

 50

weightmagnitude=0.01;
weightstooutput=(rand(outputsize,groupsinc2*c2side^2+1)-.5)*weightmagnitude;
 %Each output pixel is connected to each
 %pixel in c2 and to a fixed 1-neuron.
eta=.01; %Training speed.
decayfactor=0.999; %Speed is reduced by this factor
 %after each lap.
alfa=.2; %Momentum influence.
mom=zeros(size(weightstooutput)); %Matrix where we store old weights.

%Do the preprocessing (repeated optical evaluations) first.
outpreproc;

%Now for the outputtraining
for lap = 1:2000
 indexvector=shuffle(outputsize); %Shuffles the pictures.

 for curpic=1:outputsize;
 %Randomize style
 r=rand;
 if r<0.33
 style='mon';
 elseif r<0.66
 style='ch';
 else
 style='timk';
 end %if

 name=[style num2str(indexvector(curpic)) 'c2'];
 cd opticresults
 load (name)
 cd ..
 contoutput;

 %Now we evaluate the errors.
 correct=zeros(outputsize,1); %Vector to which we compare
 %the output of the system.
 correct(indexvector(curpic)+1)=1; %Output is indexed by the value
+1,
 %that is zero is stored in
output(1).
 outerror=correct-output;
 errmat(lap)=sum(outerror); %The errors during training
 %are stored in this matrix.
 delta=outerror*c2c';
 weightstooutput= weightstooutput+eta*delta+alfa*mom; %Update.
 mom=eta*delta;
 end %curpic

Appendix 4. Matlabfiler

51

 eta=eta*.decayfactor;
end %lap

cd matfiles
save monchtimk2000
cd ..

A4.2 Help files in alphabetical order

A4.2.1 Contest.m

%Time for the contest.

contestsize=5;
%In each group 5x5 cells compete against each other.
latinhibfactor=.05;
%During the competition all groups inhibate each other laterally.
allwinners=zeros(groupsins2,3);
%Value, row and column of winning neuron for each group.

for row=1:s2side-contestsize+1
 %loop over rows of neurons
 for column=1:s2side-contestsize+1
 %loop over columns of neurons
 %Now the pillar is fixed and the groups compete with each other.
 %The group within this pillar which has the largest output
 %gets its weights updated.
 pillarwinner=[0 0 0 0];
 %value, x, y, and group of the winner within the pillar.
 for group=1:groupsins2
 %loop over the excitatory groups in s2
 onegroup=getgroup(group,s2);
 uplimit=row;
 downlimit=row+contestsize-1;
 leftlimit=column;
 rightlimit=column+contestsize-1;
 groupsample=onegroup(uplimit:downlimit,leftlimit:rightlimit);
 %groupsample contains the neurons of one group in the
 %current contest.
 [m,y]=max(groupsample);
 %m is a vector of max values for each column, y contains
 %the row numbers.
 [m,x]=max(m);
 %m holds the value and x holds the column in the sample.
 y=y(x); %y holds the row in the sample.
 %Now let's implement the lateral inhibition.
 for latinhibgroup=1:groupsins2

Appendix 4: Matlabfiler

 52

 if latinhibgroup~=group
 latgroup=getgroup(latinhibgroup,s2);
 m=m-latinhibfactor*latgroup(y,x);
 end %if
 end %latinhibgroup

 %Were the weights the best for this feature,
 %or do other groups have better weights?
 if m-conscience(group)>pillarwinner(1)
 pillarwinner=[m row+y-1 column+x-1 group];
 %Update winner.
 end %if
 end %group

 %We've gone through the pillar. Time to update the
 %contest protocol.
 group=pillarwinner(4);
 if group>0
 if pillarwinner(1)>allwinners(group,1)
 allwinners(group,:)=pillarwinner(1:3);
 end %if
 end %if
 end %column
end %row

A4.2.2 Contoutput.m

%evaluate continuous output.

evaluatec2c;
%Presents c2 in column form.

output=weightstooutput*c2c;

A4.2.3 Discreteweights.m

%A routine to change a continuous weightmatrix into one with weights quantized
%in 17 discrete steps.
oldmatrix=weightmatrix;
resolution=graypix^2+1
upperlimit=max(max(weightmatrix));
if upperlimit>0
 stepsize=upperlimit/(resolution-1);
 tempmatrix=round(weightmatrix/stepsize);
 weightmatrix=stepsize*floor(tempmatrix);

Appendix 4. Matlabfiler

53

end %if

A4.2.4 Evaluatec1.m

%Evaluate the first C-layer.

%We begin by constructing four matrices holding the 'corners' in all
%the fields of view.
pixel1=s1(1:2:size(s1,1),1:2:size(s1,2));
pixel2=s1(2:2:size(s1,1),1:2:size(s1,2));
pixel3=s1(1:2:size(s1,1),2:2:size(s1,2));
pixel4=s1(2:2:size(s1,1),2:2:size(s1,2));

threshold=0.5;
%Now we compare each pixelvalue with the threshold-value.
pixel1=max(0,pixel1-threshold);
pixel2=max(0,pixel2-threshold);
pixel3=max(0,pixel3-threshold);
pixel4=max(0,pixel4-threshold);

%Now we construct an intermediate C1-layer.
cint=zeros(c1side*8,c1side);
%Time for the OR-function.
cint=pixel1|pixel2|pixel3|pixel4;

%Now we evaluate the final C1-layer. The groups of cint are
%paired two by two.

cone=getgroup(1,cint);
ctwo=getgroup(2,cint);
ctot=cone|ctwo;
c1=putgroup(ctot,1,c1);

cone=getgroup(3,cint);
ctwo=getgroup(4,cint);
ctot=cone|ctwo;
c1=putgroup(ctot,2,c1);

cone=getgroup(5,cint);
ctwo=getgroup(6,cint);
ctot=cone|ctwo;
c1=putgroup(ctot,3,c1);

cone=getgroup(7,cint);
ctwo=getgroup(8,cint);
ctot=cone|ctwo;
c1=putgroup(ctot,4,c1);

Appendix 4: Matlabfiler

 54

A4.2.5 Evaluatec2.m

%Evaluate the second C-layer.
%We begin by constructing four matrices holding the 'corners' in all
%the fields of view.
pixel1=s2(1:2:size(s2,1),1:2:size(s2,2));
pixel2=s2(2:2:size(s2,1),1:2:size(s2,2));
pixel3=s2(1:2:size(s2,1),2:2:size(s2,2));
pixel4=s2(2:2:size(s2,1),2:2:size(s2,2));

c2threshold=.4;

%Now we compare each pixelvalue with the threshold-value.
pixel1=max(0,pixel1-c2threshold);
pixel2=max(0,pixel2-c2threshold);
pixel3=max(0,pixel3-c2threshold);
pixel4=max(0,pixel4-c2threshold);

%Time for the OR-function.
c2=pixel1|pixel2|pixel3|pixel4;

A4.2.6 Evaluatec2c.m

%Turns the c2 layer into a column vector.

c2c=ones(groupsinc2*c2side^2+1,1)*(-1);
%The last component is for the threshold value.

for group=1:groupsinc2
 onegroup=getgroup(group,c2);
 for row=1:c2side
 groupstart=(group-1)*c2side^2;
 c2c(groupstart+(row-1)*c2side+1:groupstart+row*c2side)=onegroup(row,:);
 end %row
end %group

A4.2.7 Fillmatrix.m

function big=fillmatrix (unitmatrix,fillsize)
%unitmatrix is a square matrix which size must
%a factor in fillsize.

small=length(unitmatrix);
for row=1:small:fillsize
 left(row:row+small-1,1:small)=eye(small);
end %row

Appendix 4. Matlabfiler

55

halfway=left*unitmatrix;

for col=1:small:fillsize
 right(1:small,col:col+small-1)=eye(small);
end %col

big=halfway*right;

Appendix 4: Matlabfiler

 56

A4.2.8 Getfixweights.m

function fixweights=getfixweights(viewsize,groups)

%This function calculates the weighs to the inhibitory group.

w=1;
s=viewsize;
total=0;

while s>1
 total=total+w*(s^2-(s-2)^2);
 s=s-2;
 w=w+1;
end %while

if s==1
 total=total+w;
end %if

k=1/(total*groups);

weights=zeros(1,viewsize^2*groups);

weightmatrix=ones(viewsize)*k;
levels=floor((viewsize+1)/2);
for level=2:levels
 index=level:viewsize-level+1;
 weightmatrix(index,index)=weightmatrix(index,index)+k*ones(viewsize-(level-1)*2);
end %for

for group=0:groups-1
 for row=1:viewsize
 goffset=group*viewsize^2;
 weights(1+(row-1)*viewsize+goffset:row*viewsize+goffset)=weightmatrix(row,:);
 end %row
end %group

fixweights=[weights 0];

A4.2.9 Getgroup.m

function onegroup=getgroup(group,matrix)
%Gets the desired group from the matrix storing all groups.

sidesize=size(matrix,2);
uplimit=(group-1)*sidesize+1;

Appendix 4. Matlabfiler

57

downlimit=group*sidesize;
onegroup=matrix(uplimit:downlimit,:);

Appendix 4: Matlabfiler

 58

A4.2.10 Getoutput.m

function output=getoutput(bild,version, svarsmatris)
rad=bild*3;

output=svarsmatris(rad+version,:);

A4.2.11 GetS1set.m

%Procedure to form trainingset for S1.

trainingset=zeros(groupsins1,s1viewsize^2);
 %One picture for each group.

%define temporary vectors.
middledot=[0 0 1 1 0 0];
lmiddledot=[0 0 1 0 0 0];
rmiddledot=[0 0 0 1 0 0];
horiline=[1 1 1 1 1 1];
nada=[0 0 0 0 0 0];
left=[1 0 0 0 0 0];
almostleft=[0 1 0 0 0 0];
middleleft=[0 0 1 0 0 0];
middleright=[0 0 0 1 0 0];
almostright=[0 0 0 0 1 0];
right=[0 0 0 0 0 1];
twoandthree=[0 1 1 0 0 0];
fourandfive=[0 0 0 1 1 0];
oneandtwo=[1 1 0 0 0 0];
lefthalf=[1 1 1 0 0 0];
righthalf=[0 0 0 1 1 1];
twothreefour=[0 1 1 1 0 0];
threefourfive=[0 0 1 1 1 0];
fiveandsix=[0 0 0 0 1 1];

%Now we define the training patterns in the following order:
%thick vertical line
%thin vertical line
%thick horizontal line
%thin horizontal line
%thick ul corner to lr corner
%thin ul corner to lr corner
%thick ll corner to ur corner
%thin ll corner to ur corner

f=1.7; %This factor is needed to make the thick and

Appendix 4. Matlabfiler

59

 %the thin feature detectors respond with
 %approximately the same strength.

trainingset=[[middledot middledot middledot middledot middledot middledot]/f
 lmiddledot lmiddledot lmiddledot lmiddledot lmiddledot lmiddledot
 [nada nada horiline horiline nada nada]/f
 nada nada horiline nada nada nada
 [oneandtwo lefthalf twothreefour threefourfive righthalf fiveandsix]/f
 left almostleft middleleft middleright almostright right
 [fiveandsix righthalf threefourfive twothreefour lefthalf oneandtwo]/f
 right almostright middleright middleleft almostleft left];

clear middledot horiline nada left almostleft twoandthree
clear middleleft middleright almostright right fourandfive
clear fiveandsix lefthalf lmiddledot oneandtwo righthalf
clear rmiddledot threefourfive twothreefour

A4.2.12 Getsmallmatrix.m

function smallmatrix=getsmallmatrix(rowofweights,time)
%Picks out the relevant weights for the current 3x3 matrix.

smallmatrix=zeros(3);
start=(time-1)*3+floor((time-1)/2)*12+1;
smallmatrix(1,:)=rowofweights(start:start+2);
smallmatrix(2,:)=rowofweights(start+6:start+8);
smallmatrix(3,:)=rowofweights(start+12:start+14);

A4.2.13 Getweights.m

function weights=getweights(ingroup,outgroup,allweights,viewsize)
%Returns a viewsize*viewsize matrix with the weights
%between ingroup and outgroup.

weights=zeros(viewsize);
start=(ingroup-1)*viewsize^2;
for rownumber=1:viewsize
 left=start+(rownumber-1)*viewsize+1;
 right=start+rownumber*viewsize;
 row=allweights(outgroup,left:right);
 weights(rownumber,:)=row;
end %rownumber

Appendix 4: Matlabfiler

 60

A4.2.14 Opts1.m

%Procedure opts1.

%s1 should be a column of groups with the number of groups being
%groupsins1.

optstart=flops;

groupcolumn=zeros((groupsins1+1)*s1side,s1side);
%In this matrix all groups are temporarely stored below each other.
SLM11=pixelizeinput(input,3);
%multiplies each input-pixel with the appropriate number of SLM-pixels.

for group =1:groupsins1+1
 onegroup=zeros(s1side);

 for time=1:4
 %The computation of each s1group must be performed in 4 parts.
 %time is a number between 1 and 4 which tells us which 3x3 pixel-
 %region is currently on display.
 %1 2
 %3 4

 macrorow=floor((time-1)/2)+1;
 macrocol=rem((time-1),2)+1;

 smallmatrix=getsmallmatrix(weightstos1(group,:),time);
 weightmatrix=fillmatrix(smallmatrix,3*inpside);
 %Each inputpixel is projected onto 3x3 weightpixels at a time.
 discreteweights;
 %The binary nature of the weight-SLM leads to a quantization of values.
 CCD=SLM11.*weightmatrix;
 %In order for this simulative multiplication to work, SLM11
 %must have the same dimensions as weightmatrix. That is, each
 %inputpixel must be composed of 3x3 pixels in the same state.

 for sr=1:s1side
 for sc=1:s1side
 %The CCD is being gone through one pixel at a time.
 rowstart=(macrorow-1)*3+sr;
 colstart=(macrocol-1)*3+sc;
 %Since we are not dealing with complete 6x6-pixels, we have to make
 %jumps in the storage matrix after every 3x3-pixel.
 onegroup(sr,sc)=onegroup(sr,sc)+sumview(CCD,rowstart,colstart,3);
 end %sc
 end %sr

 end %time

Appendix 4. Matlabfiler

61

 groupcolumn=putgroup(onegroup,group,groupcolumn);

end %group

%Now the optical multiplications for all groups are finished and
%the results are stored in groupcolumn.

%Now let's do the non-optical part of the S1-evaluation.
inhibgroup=getgroup(groupsins1+1,groupcolumn);
for group=1:groupsins1
 b=weightstos1(group,s1viewsize^2+1);
 denominator=1+r1/(1+r1)*b*sqrt(inhibgroup);
 result=zeros(s1side);
 currentgroup=getgroup(group,groupcolumn);
 result=r1*max(0,(1+currentgroup)./denominator-1);
 s1=putgroup(result,group,s1);
end %group

totopt=totopt+flops-optstart;

Appendix 4: Matlabfiler

 62

A4.2.15 Opts2.m

%Procedure opts2.

%s2 and c1 should both be a column of groups with the number of groups being
%groupsins2 and groupsinc1 respectively.

optstart=flops;

clear weightmatrix %In case this has been used earlier,
 %it is cleared.
sumgroupcol=zeros(s2side*(groupsins2+1),s2side);
%This is to store the CCD-result which will be used in the final algorithm.

for ingroup =1:groupsinc1
%loop over inputgroups, that is, groups in c1.

 c1group=getgroup(ingroup,c1);
 SLM21=pixelizeinput(c1group,s2viewsize);
 %Each input-pixel must be duplicated as many times as there are synapses
 %connected to it.

 for outgroup=1:groupsins2+1
 %loop over outputgroups, that is, groups in s2 + the inhibitory group.

 weights=getweights(ingroup,outgroup,weightstos2,s2viewsize);
 weightmatrix=fillmatrix(weights,s2viewsize*c1side);
 %Each inputpixel is projected onto 6x6 weightpixels at a time.
 discreteweights;
 %The binary nature of the weight-SLM leads to a quantization of values.
 CCD=SLM21.*weightmatrix;
 %In order for this simulative multiplication to work, input
 %must have the same dimensions as weightmatrix. That is, each
 %inputpixel must be composed of 6x6 pixels in the same state.
 sumgroup=zeros(s2side);

 for sr=1:s2side
 for sc=1:s2side
 %We now update all pixels of the current s2-group one by one.
 sumgroup(sr,sc)=sumview(CCD,sr,sc,s2viewsize);
 end %sc
 end %sr

 old=getgroup(outgroup,sumgroupcol);
 sumgroupcol=putgroup(old+sumgroup,outgroup,sumgroupcol);
 end %outgroup

end %ingroup

%Now the multiplications for all groups are finished and the results

Appendix 4. Matlabfiler

63

%are stored in sumgroupcol.

%Now let's do the non-optical part of the S2-evaluation.
inhibgroup=getgroup(groupsins2+1,sumgroupcol);
for group=1:groupsins2
 b=weightstos2(group,groupsinc1*s2viewsize^2+1);
 denominator=1+r2/(1+r2)*b*sqrt(inhibgroup);
 result=zeros(s2side);
 currentgroup=getgroup(group,sumgroupcol);
 result=r2*max(0,(1+currentgroup)./denominator-1);
 s2=putgroup(result,group,s2);
end %group

totopt=totopt+flops-optstart;

A4.2.16 Outpreproc.m

%Repeated optical evaluations are done once and for all, and the results are
%saved into files.

%This version saves C2 for the following pictures:
 %co, min, ch, timk, mon

genericname2='.raw.tab';

picnum=0;

genericname1='bilder/co';
index=num2str(picnum);
input=readpicture([genericname1 index genericname2],inpside);

opts1;
evaluatec1;
opts2;
evaluatec2;

cd opticresults
save co0c2 c2
cd ..

etc,etc....

A4.2.17 Pixelizeinput.m

function SLM=pixelizeinput(input,pixelsize)

Appendix 4: Matlabfiler

 64

inpsize=length(input);
colindex=0;
rowindex=0;

left=zeros(pixelsize*inpsize,inpsize);
for index=1:pixelsize:pixelsize*inpsize
 colindex=colindex+1;
 left(index:index+pixelsize-1,colindex)=ones(pixelsize,1);
end %index

right=zeros(inpsize,inpsize*pixelsize);
for index=1:pixelsize:pixelsize*inpsize
 rowindex=rowindex+1;
 right(rowindex,index:index+pixelsize-1)=ones(1,pixelsize);
end %index

SLM=left*input*right;

A4.2.18 Pretrains2.m

%This routine gives the weights to the S2-layer small startout-values chosen
%so different groups get different styles.

trainingset=zeros(groupsins2,s2viewsize^2*groupsinc1);
 %One picture for each S2-group.
 %Each S2-group takes input from
all C1-groups.

%Temporary vectors.
horiline=[1 1 1 1];
nada=[0 0 0 0];
left=[1 0 0 0];
almostleft=[0 1 0 0];
almostright=[0 0 1 0];
right=[0 0 0 1];

%Now the features we trained C1 for:
vertline=[almostleft almostleft almostleft almostleft];
c1horiline=[nada horiline nada nada];
ultolr=[left almostleft almostright right];
lltour=[right almostright almostleft left];
empty=[nada nada nada nada];

%And now the trainingset for s2.

group1=[vertline empty empty empty];
group2=[empty c1horiline empty empty];

Appendix 4. Matlabfiler

65

group3=[empty empty ultolr empty];
group4=[empty empty empty lltour];
group5=[vertline c1horiline empty empty];
group6=[vertline empty empty lltour];
group7=[vertline empty ultolr empty];
group8=[empty c1horiline empty lltour];
group9=[empty c1horiline ultolr empty];
group10=[empty empty ultolr lltour];
group11=[vertline c1horiline ultolr empty];
group12=[vertline c1horiline empty lltour];
group13=[vertline empty ultolr lltour];
group14=[empty c1horiline ultolr lltour];
group15=[vertline c1horiline ultolr lltour];

trainingset= [group1
 group2
 group3
 group4
 group5
 group6
 group7
 group8
 group9
 group10
 group11
 group12
 group13
 group14
 group15];

clear horiline nada left almostleft leftright
clear mittleft mittright almostright right

%Now we can train weightstos2.
q=100; %Training speed.
c=weightstos2(groupsins2+1,1:groupsinc1*s2viewsize^2);
for feature=1:size(trainingset,1)
 u=trainingset(feature,:);
 deltaa=q*c.*u;
 weightstos2(feature,:)=[deltaa 0];
end %feature

nonormfactor=1.6; %It turns out that normalization leaves
 %with weights that are slightly too small.
 %We therefore compensate with this factor.
for row=1:groupsins2
 oldsum=sum(weightstos2(row,:));
 weightstos2(row,:)=weightstos2(row,:)/oldsum*nonormfactor;
end %row

Appendix 4: Matlabfiler

 66

clear trainingset

A4.2.19 Putgroup.m

function matrix=putgroup(onegroup,groupnumber,matrix)
%Stores the desired group in the matrix storing all groups.

sidesize=size(onegroup,1);
uplimit=(groupnumber-1)*sidesize+1;
downlimit=groupnumber*sidesize;
matrix(uplimit:downlimit,:)=onegroup;

A4.2.20 Readpicture.m

function f=readpicture(fnamn,N)

%This function reads a picturefile and transforms the contents into a matlab-
%friendly format. The result is stored in the matrix f. It is used with this
%syntax: "m=readpicture('path/filename',sidesize);"

fid=fopen(fnamn,'r');
v=fscanf(fid,'%d');
v=~round(v/255);
f=reshape(v,N,N)';
fclose(fid);

A4.2.21 Shuffle.m

function outvector=shuffle(outsize)
a=0:outsize-1;
while length(a)>0
 x=floor(rand*length(a)+1);
 outvector=[outvector a(x)];
 a=[a(1:x-1) a(x+1:length(a))];
end

A4.2.22 Sumview.m

function total=sumview(CCD,rowstart,colstart,pixelsize)

CCDrowstart=(rowstart-1)*pixelsize+1;

Appendix 4. Matlabfiler

67

CCDcolstart=(colstart-1)*pixelsize+1;
total=0;

step=pixelsize+1;
stop=step*(pixelsize-1);
for rowoffset=0:step:stop
 for coloffset=0:step:stop
 total=total+CCD(CCDrowstart+rowoffset,CCDcolstart+coloffset);
 end %coloffset
end %rowoffset

A4.2.23 Update15groups.m

%TO UPDATE ALL GROUPS AFTER ONE IMAGE, THIS IS USED.
u=zeros(1,s2viewsize^2*groupsinc1);
for group=1:groupsins2
 %Go through all groups and check if they won a contest. Then they should be updated.
 if allwinners(group,1)>0
 x=allwinners(group,3);
 y=allwinners(group,2);

 %The input to the winning neuron has to be transformed
 %into a row vector.
 for c1group=1:groupsinc1
 onegroup=getgroup(c1group,c1);
 uplimit=y;
 downlimit=y+s2viewsize-1;
 leftlimit=x;
 rightlimit=x+s2viewsize-1;
 temp=onegroup(uplimit:downlimit,leftlimit:rightlimit);
 tempvector=reshape(temp',1,s2viewsize^2);
 clear temp
 u((c1group-1)*s2viewsize^2+1:c1group*s2viewsize^2)=tempvector;
 clear tempvector
 end %c1group

 c=weightstos2(groupsins2+1,1:groupsinc1*s2viewsize^2);
 norminput=u/sum(u);
 aweights=weightstos2(group,1:s2viewsize^2*groupsinc1);
 deltaa=q2*(norminput-aweights);
 aweights=aweights+deltaa;
 aweights=aweights/sum(aweights);
 v=sqrt(c*norminput');
 deltab=q2/2*(v-weightstos2(group,s2viewsize^2*groupsinc1+1));
 rightpart=weightstos2(group,s2viewsize^2*groupsinc1+1)+deltab;
 weightstos2(group,:)=[aweights rightpart];
 clear aweights deltaa rightpart

Appendix 4: Matlabfiler

 68

 conscience(group)=conscience(group)+deltaconscience;
 %Increase the conscience of the winner and decrease the others'.

 else
 %The group won't be updated => lower its conscience.
 conscience(group)=max(0,conscience(group)-deltaconscience);
 end %if
end %group
clear allwinners %This is no longer needed.

References

69

References

1. S. Haykin, “Neural Networks” (Macmillan College Publishing Company, 1994)
2. P. D. Wasserman, “Neural Computing” (Van Nostrand Reinhold, 1989)
3. R. Hecht-Nielsen, “Neurocomputing” (Addison-Wesley Publishing Company, 1990)
4. K. Fukushima, S. Miyake, T. Ito, “Neocognitron: A Neural Network Model for a Mechanism of Visual Pat-

tern Recognition”, IEEE Transactions on Systems, Man, and Cybernetics, vol SMC-13, no. 5, 1983
5. Richard Englund, “Optical Neural Networks for Associative Image Processing”, Chalmers University of

Technology, Department of Physics, Göteborg, Sweden, 1995
6. T. Chao, W. W. Stoner, “Optical implementation of a feature-based neural network with application to au-

tomatic target recognition”, Appl. Opt. vol. 32, no. 8, 1993
7. B. Löfving, “Dynamic Light Modulation by Ferroelectric Liquid Crystal Devices”, Technical Report No

259L, Thesis for degree of Licentiate of Technology, Chalmers Univ. of Techn. Department of Microwave
Techn. , Göteborg, Sweden 1997

8. K. M. Johnson, G. Moddel, “Motivations for using ferroelectric liquid crystal spatial light modulators in
neurocomputing”, Appl. Opt. vol. 28, no. 22, 1989

9. K. Fukushima, “Neocognitron: A Self-organizing Neural Network Model for a Mechanism of Pattern Recog-
nition Unaffected by Shift in Position”, Biol. Cybernetics 36, 193-202 (1980)

10. F. Nikolajeff, ”Diffractive Optical Elements: Fabrication, Replication, and Applications and Optical Proper-
ties of a Visual Field Test”, Technical Report No 300, Doctoral Thesis for the degree of Doctor of Philo-
sophy, Chalmers Univ. of Techn. Department of Microwave Techn. , Göteborg, Sweden 1997

